
Survey	of	Adult	Skills	Technical	Report 1 Chapter	5	

Chapter	5:	Development	of	the	Cognitive	Items	

Britta	Upsing,	Frank	Goldhammer,	Maya	Schnitzler,	Robert	Baumann,	Roland	Johannes,	Ingo	Barkow	
and	Heiko	Rölke,	DIPF;	Isabelle	Jars,	Thibaud	Latour,	Patrick	Plichart,	Raynald	Jadoul	and	Christopher	

Henry,	CRP;	and	Mike	Wagner,	ETS	

 

The implementation of the cognitive items for PIAAC faced several challenges. As stated before, 
PIAAC was the first international large-scale study to be conducted entirely on the computer. 
Therefore, existing link items from prior studies like IALS and ALL had to be converted from 
paper to computer. In addition, new items had to be developed both in literacy and numeracy to 
take advantage of the new possibilities of computer-based assessment. Further, an entirely new 
assessment domain, problem solving in technology-rich environments, was defined and items had 
to be developed. This was all done under a short timeframe in collaboration with participating 
countries that developed items on their own, as well as by combining item development teams 
from different countries. 

To cope with these challenges, a multifaceted approach was taken, reusing existing item 
development and test delivery software to the extent possible and developing easy-to-use new 
software to fill in the gaps. 

As a basis, the assessment software TAO was used. In the so-called electronic reading assessment 
(ERA) option of the PISA 2009 study, TAO was used with the Hypertext Builder, a graphical 
authoring tool for complex items. This approach was reused and extended for PIAAC, resulting 
in a completely new version called the CBA (Computer-Based Assessment) ItemBuilder. All in 
all, the following combination was used: 

 Test definition, item sequencing, item questions: TAO 

 Literacy linking items/stimuli: ItemBuilder 

 New literacy items/stimuli: ItemBuilder 

 Numeracy linking items/stimuli: ItemBuilder 

 New numeracy items/stimuli: ItemBuilder 

 Problem solving in technology-rich environments: TAO (new item type) 

The software and the procedures to produce the items are described in more detail below. 



Survey	of	Adult	Skills	Technical	Report 2 Chapter	5	

5.1	Development	of	literacy	and	numeracy	items	
As outlined above, literacy and numeracy items have been produced using the CBA ItemBuilder 
software. For the linking items, the existing paper items were used as a draft, while the new items 
were built from scratch or drafted using other standard software.  

The goal was to produce an international universal item that could serve as a basis for country 
translations and adaptations without having to touch the layout. As it turned out later on, this 
often was not possible as there are great differences between languages in how much space they 
consume. 

The CBA ItemBuilder is a graphical tool that enabled assessment domain experts to develop 
complex items in a what-you-see-is-what-you-get (WYSIWYG) manner without any 
programming. The CBA ItemBuilder consists of two major parts: the editor and an independent 
runtime environment. The editor allows for a WYSIWYG work style where you can drag item 
elements from a palette and freely drop them wherever necessary. Items designed in the editor are 
stored in an intermediate item description format. From this format, the executable item is 
generated using software generation principles. This ensures that the runtime for CBA 
ItemBuilder items can be changed without touching the editor in a relatively easy manner. The 
first versions of the runtime environment (used for PISA 2009 ERA) were based on Adobe Flash. 
This was changed in the preparation phase of the PIAAC study to a mix of standard Web 
technologies: HTML, JavaScript and SVG. The items produced with the CBA ItemBuilder could 
be used standalone as well as integrated into other assessment software. For simple assessment 
purposes, a graphical user interface was provided, allowing for editing and executing tests. In 
PIAAC, ItemBuilder items were used as stimuli integrated to TAO items. More information 
about the ItemBuilder software can be found in Rölke (2012). Here we only outline its 
possibilities. 

5.1.1	The	CBA	ItemBuilder	

The CBA ItemBuilder System consists of several interconnected components – see Figure 5.1 for 
an overview. The most prominent is the standalone CBA ItemBuilder. It is a desktop application 
based on Java and Eclipse technology. The CBA ItemBuilder was used to design and try out 
single items. Once an item was ready, a device-independent format was generated for later usage, 
the CBA Item. A CBA Item could be deployed on various platforms ranging from USB drives to 
the Internet.  



Survey	of	Adult	Skills	Technical	Report 3 Chapter	5	

Figure 5.1: System architecture overview (M. Dorochevsky, Softcon) 

 

CBA Items were delivered by a Java application server, usually JBoss. They could run on other 
servlet containers as well. As stated above, they consist of open Web standard: HTML code 
enriched by JavaScript and SVG. The Eclipse RAP framework (Eclipse Foundation 2012b) is 
used for graphical user interface components. Complex computations are being done on the 
server side, implemented in Java. CBA Items can be displayed on any current browser (e.g., 
Firefox, Chrome, Internet Explorer), provided JavaScript is enabled. For PIAAC, only Firefox 
was supported. 

The CBA ItemBuilder offers a graphical user interface to compose stimuli and items via drag and 
drop. A stimulus could be used in one or several items, for example, in combination with 
different questions. As with other modern integrated development environments (IDE), it offered 
different views on the item at hand. Figure 5.2 gives an example for a mail client item in process. 



Survey	of	Adult	Skills	Technical	Report 4 Chapter	5	

Figure 5.2: CBA ItemBuilder graphical user interface 

 
 

On the left side of the CBA ItemBuilder window, the Project View is shown. This view gives an 
overview on complex items that consist of more than one page. The Project View allows for a 
quick selection of all Pages that belong to one item (or project). In the middle of the screen, the 
Page Editor View is shown. This is the most important view. It allows for authoring of item pages 
or stimuli – to put it simply, something that can be shown on a computer screen later on in an 
assessment. The screenshot in Figure 5.2 shows the item as it is being edited. This is done in a 
mode that comes close to WYSIWYG but abstracts from images or design effects, for example. 
These can be included in a preview of the item. 

On the right side of the image in Figure 5.2 is the Palette View. It contains all elements an item 
can be constructed with, for example, text fields, buttons or input fields. To apply such an 
element, the user simply drags it with the mouse and drops it in the Editor View. An example of 
an editing process can be found in the following subsection on so-called link items. 

For an in-depth look at the CBA ItemBuilder, please refer to the mentioned literature (Rölke, 
2012). 

5.1.2	Link	items	

As the domains of literacy and numeracy had been measured in previous large-scale international 
surveys, it was a requirement that PIAAC link back to IALS and ALL. As a result, a set of 
linking items that had already been used in these studies was used in PIAAC. These studies have 
been performed as paper-and-pencil studies. The materials were therefore available as text 
documents in Microsoft Word format. The main challenge for the item development was to 
reproduce the paper item layout as closely as possible. Naturally, this could not always be 



Survey	of	Adult	Skills	Technical	Report 5 Chapter	5	

achieved. To give just one example of the problems, the layout had to be changed from portrait-
format paper to a landscape-format screen, and scrolling was not allowed. 

Some materials like texts and images could be extracted from the existing paper items. Some 
images had to be redone, to add interactive areas, for example. 

Figure 5.3 shows an example of a typical link item. It was originally derived from a newspaper 
article and was formatted for the paper assessment. For PIAAC it had to be reformatted to fit the 
screen layout and so on. To come as close as possible to the paper item that required marking as a 
means for answering the question, a new interaction mode called multiple highlighting was 
introduced. We come back to this interaction mode later on when dealing with the scoring of the 
items. 

 

Figure 5.3: Link item example 

 

5.1.3	New	items	

New items for literacy were developed by ETS in the US in cooperation with ACER in Australia. 
These items used features of the CBA ItemBuilder that were not utilized in the linking items. The 
new items in literacy focused on electronic texts, including Web pages, emails and discussion 
boards. This required the use of a simulated Web browser environment by the user. This 
environment was modeled in the CBA ItemBuilder. The ItemBuilder supported multiple stimulus 



Survey	of	Adult	Skills	Technical	Report 6 Chapter	5	

“pages” within a single item. These pages could be linked via hyperlinks that were embedded in 
the item text. The runtime for these items supported maintenance of a hyperlink history, allowing 
the user to navigate back and forth among pages that had been visited. 

The new items in literacy featured one unique response mode. Some items asked the user to click 
on a link in the text as his or her answer to the question. In these items, the scoring was based on 
the target of the hyperlink. Two pages were constructed, one for correct links and one for 
incorrect links. These pages looked identical to the test taker but had different identifiers 
internally. The test taker was given credit for a correct answer if he or she finished the item with 
the correct page showing in the browser.  

New items for numeracy were developed by ETS in cooperation with members of the Numeracy 
Expert Group. These items had similar functionality and scoring mechanisms as the linking 
numeracy items. The only thing that distinguished these items from the linking items was the use 
of color images and artwork. The linking items, because of their legacy as paper-based items, 
were entirely in black and white. 

5.2	Development	of	the	automatic	scoring	software	
To enable adaptive testing in PIAAC for literacy and numeracy, those items had to be scored 
automatically and instantaneously by the platform. Various response modes were used which 
required developing different strategies for automatic scoring of test-taker responses. If a 
response mode included scoring rules with any textual or numerical information, they had to be 
adapted nationally. For those response formats, various workflows and (online) tools were 
developed to organize and support the national adaptations and the testing of adapted scoring 
rules. 

5.2.1	Response	modes	in	literacy	and	numeracy	

Out of the PIAAC domains, literacy and numeracy included automatic scoring for adaptive 
testing and were based on a variety of response modes. Response modes could be divided into: i) 
those requiring interactions with the stimulus; and ii) those including interactions with the left 
panel of the PIAAC screen as shown below in Figure 5.4. The stimulus interactions were: 

 Stimulus highlighting (items requiring the test taker to select a piece of text by clicking 
and dragging or by double-clicking a word) 

 Stimulus clicking (meaning it is necessary to click on a graphical element, which usually 
becomes marked to indicate it has been selected; sometimes more than one element is 
clickable) 

 Stimulus clicking link (used for new literacy items and refers to clicking on a link in a 
simulated Web browser environment) 

 Stimulus multiple choice check box (clicking one or several check boxes that are included 
in a simulated Web browser environment used in new literacy items) 



Survey	of	Adult	Skills	Technical	Report 7 Chapter	5	

Figure 5.4: Scoring a highlighting item 

 

The interactions on the left panel of the PIAAC screen were: 

 Left panel single choice radio button/pulldown menu (used in new numeracy items and 
refers to clicking and selecting a single item in a group of radio buttons or in a pulldown 
menu, respectively) 

 Left panel multiple choice check box (clicking one or several check boxes that are 
provided on the left panel) 

 Left panel numeric entry number match/exact match (requires the test taker to enter 
number(s) into input box(es)) 

National adaptations were done mainly for: i) highlighting items because of the translation of 
textual information; and ii) numeric entry items because of adaptations to the national number 
format and/or currency system. Therefore, scoring testing efforts were focused on these item 
types. In contrast, clicking, multiple-choice and single-choice items were translated and adapted 
without affecting the scoring definition, that is, their scoring is the same as the one in the 
international version. In these cases, errors were assumed to be less probable because adaptation 
of scoring rule as one source of error is not relevant. 



Survey	of	Adult	Skills	Technical	Report 8 Chapter	5	

5.2.2	Automatic	scoring	of	highlighting	items	

Stimulus highlighting items required the test taker to select one or more pieces of text by clicking 
and dragging or by double-clicking a word.  

Highlighting items were usually scored by evaluating whether the minimum correct response had 
been selected, and, at the same time, whether the selection did not exceed the maximum correct 
response. Hence, each highlight item had a specified minimum and maximum response. The 
minimum response consisted of individual words or phrases that were identified as critical 
portions of a correct response. In general, the maximum correct response for highlight items 
included the entire line in which the correct answer was located, any or all of the line above the 
correct response, and any or all of the line below the correct response. However, the maximum 
correct response could not contain any incorrect information, as identified by test developers. So 
if any part of the line above or below had contradictory or incorrect information, it was excluded 
from the maximum correct response. 

Highlighting responses were scored automatically by the system based on the definition of text 
blocks and the scoring rule referring to the text blocks. Text blocks define the parts of the text in 
the stimulus representing the minimum and maximum correct response. They were not visible for 
the test taker. Text blocks with the correct answer were already defined in the international item 
version. For the national versions of the stimulus, the text has been translated and the position 
and size of text blocks have been adapted by using a specific text block editor built into the CBA 
ItemBuilder software.  

5.2.3	Automatic	scoring	of	numeric	entry	items	

Exact match items required the test taker to enter number(s) into input box(es) on the left panel of 
the PIAAC screen. Numeric entries were scored automatically by the system based on the 
definition of correct numeric response(s) included in the scoring rule. The exact match scoring 
method is equivalent to string match; that is, the system checked for character equivalence 
instead of numerical equivalence. For example, if a correct response for an exact match item was 
defined as ‘5’, an entry of ‘20/4’ would also have been scored as incorrect. 

Number match items also required the test taker to enter number(s) into input box(es) on the left 
panel of the PIAAC screen. Numeric entries were scored automatically by the system based on 
the definition of correct numeric response(s) included in the scoring rule. The scoring method 
“number match” means that the response is correct as long as it represents the correct numerical 
value, regardless of the way the number is “spelled” by the test taker. For example, if a correct 
response for an exact match item was defined as ‘5’, an entry of ‘20/4’ would also have been 
scored as correct. 

For some items, to retain realism, the magnitude of numbers and/or the number format were 
adapted for the national version. In this case, scoring rules also were adapted. 

The Field Test scoring approach for number match items was revised to address several concerns 
expressed by experts and countries. In particular, the handling of decimal separators in the Field 
Test was considered to be too strict and unrealistic. Thus, the Main Study scoring approach 
introduced “double scoring,” which means that – within the system – the test taker’s response to 
an item was scored twice. So, before the system gave a final evaluation of the test taker’s answer, 
in all country versions it went through the following two scoring steps: i) The first scoring 



Survey	of	Adult	Skills	Technical	Report 9 Chapter	5	

assumed a comma as decimal separator (i.e., acceptable thousands separators were blanks or 
periods), while ii) the second scoring assumed a period as decimal separator (i.e., acceptable 
thousands separators were blanks or commas). If at least one of the two scorings yielded a 
“correct,” the response was considered correct. 

Moreover, for the Main Study scoring, a so‐called “strong mode” of the thousands separator(s) 
check was activated. This means that if the test taker used a thousands separator, the position of 
the separator needed to be correct to be considered a correct response. In general, only groupings 
by three digits were accepted. Groupings by four digits were acceptable only in the Japanese 
version (but not mixed groupings by four and three digits within a single number). 

5.3	Scoring	testing	strategy	
The automatic scoring procedures of the international versions of literacy and numeracy units 
were tested by the Consortium prior to distribution of the national versions. National language 
versions needed to be tested again by countries thoroughly, because for many items the definition 
of correct response(s) was adapted. This meant that scoring testing at the national level was 
especially important when the correct response included translated and/or adapted textual and 
numerical information.  

The general rationale and procedure established for testing the international version were also the 
basis for testing the national version. They were revised iteratively during the international 
testing process. Basically, two sources of error were observed during international testing: i) 
errors at the level of item editing, that is, the scoring information was specified incorrectly by the 
item editor (specification error); and, ii) errors at the level of technology, that is, the software did 
not work accurately (implementation error). All detected errors were fixed, and the scoring of 
affected units was tested again successfully.  

The testing was done manually, meaning the person responsible for testing completed a unit and 
item, respectively, as the test taker was supposed to do. Depending on the response mode, the 
tester used the keyboard for numeric entries or the mouse for selections to complete each item. 
For each response mode, a set of testing steps including the expected scoring result was defined 
to cover the most important test cases. When an item was tested, the tester gave a response as 
required by the testing step and compared the observed scoring result and the expected scoring 
result. Discrepancies between the observed scoring result and the expected scoring result needed 
to be documented and reported to the Consortium for debugging and for the Consortium to 
provide a revised version in the following testing iteration. 

Countries were required to follow the international testing plan and for customizing the 
international test cases to their national versions as explained by the Consortium.  

For the Main Study version of numeric entry items, implementing the adaptations and testing the 
adapted scoring rules was done centrally by the Consortium. 

References	
Rölke, H. (2012). The ItemBuilder: A graphical authoring system for complex item development. 

in: world conference on E-Learning in corporate, government, healthcare, and higher 
education (ELEARN), pp. 344–353. Waynesville, N.C.: Association for the Advancement 
of Computers in Education. 



Survey of Adult Skills Technical Report 1 Chapter 6 

Chapter 6: Development of Technical Support Tools 

Britta Upsing, Frank Goldhammer, Maya Schnitzler, Robert Baumann, Roland Johannes, Ingo Barkow 
and Heiko Rölke, DIPF; Isabelle Jars, Thibaud Latour, Patrick Plichart, Raynald Jadoul and Christopher 

Henry, CRP; and Mike Wagner, ETS 
 

6.1 Development of the Item Management Portal 
The Item Management Portal was the central PIAAC portal for all aspects of item development, 
item management, translation, adaptation, scoring and layout testing, and so on. It consisted of 
several parts interconnected by several workflows. Workflows were available only to authorized 
roles (or users) of the Item Management Portal. Therefore, a user and rights management system 
was also available. (For example, a translation of an item could only be verified by an authorized 
verifier, and only after it had been released by the respective NPM.)  

The Item Management Portal offered a multitude of different views to the central repository of all 
item-related information in PIAAC. It encapsulated a central database, a file server, a TAO 
Installation, and a CBA ItemBuilder server installation and it managed hundreds of gigabytes of 
data during the PIAAC study.  

We cannot give a full overview of all aspects of the Item Management Portal here. Therefore we 
concentrate on specific parts to give an idea of the overall functionality. 



Survey of Adult Skills Technical Report 2 Chapter 6 

 Figure 6.1: Item Management Portal Welcome Screen for NPMs

 

Figure 6.1 shows the so-called Welcome Screen of the Item Management Portal that was 
displayed after a NPM logged into the portal.  

As the Item Management Portal was about items, several possibilities were at hand to access 
single items or for an overview of several items. For example, in the Groups box on the left, it 
was possible to select all link items in the field of literacy with one click. From those you could, 
for example, select a single item in the Units box on the right. 



Survey of Adult Skills Technical Report 3 Chapter 6 

Figure 6.2: Item Management Portal with Item selected 

 

 

Figure 6.2 shows the Item Management Portal still in the NPM view, with one item selected. For 
this item, information about status and availability were displayed and several options were at 
hand depending on the step and the units’ status in the overall process. The following list, for 
instance, shows the options that were relevant for preparing the main study version by revising 
the field test version: 

• If you clicked on the  button, you would see the original version of the 
stimulus. 

• If you clicked on the  Button, you would see a list of the text blocks included in the 
stimulus. 

• If you clicked on the  Button, you would see all the changes made in the 
stimulus. 

• If you clicked on the  Button, you would see a clean text version of the 
stimulus. 
 

There were also several more buttons, not seen in Figure 6.2. 



Survey of Adult Skills Technical Report 4 Chapter 6 

• If you clicked on the  Button, you would see the discussion between your 
country and the Consortium. 

• If you clicked on the  Button, you would see the different inquiries that the 
stimulus consists of; you could choose the one you need to edit it. 

• If you clicked on the  Button, you could download the stimulus.  
 

Note that this is just a small part of the functionality of the Item Management Portal. Depending 
on your role and the status of the item development, other options were available such as upload 
and download of translation files, commenting, releasing items to the next step of the workflow 
and many more.  

6.2 Translation and adaptation tools 
For translation and adaptation of items, external tools were used rather than the Item 
Management Portal itself. This was to support offline work of these sometimes lengthy and time-
consuming tasks without the need of a steady and reliable Internet connection. Two tools were 
provided: the Open Language Tool (OLT) and the Textblock Translation Editor (TBTE).  

Figure 6.3: Open Language Tool 

 
 

The OLT, shown in Figure 6.3, is an open-source translation editor implemented in Java 
originating from the company Sun. It had already been used for the PISA 2009 study and has 



Survey of Adult Skills Technical Report 5 Chapter 6 

been further developed since. The OLT builds upon the XML Language Interchange File Format 
(XLIFF), an XML standard for translations. The CBA ItemBuilder provides a built-in support for 
XLIFF. Doing the translation externally to the item authoring software rather than in the CBA 
ItemBuilder itself offered the advantage of limiting layout changes by translators to an absolute 
minimum. Further information about OLT can be found at http://open-language-tools.java.net/. 

The purpose of the TBTE was to set the scoring definitions in translated highlighting items in 
accordance with the scoring definitions in the international item versions. The tool was to be used 
by the National Reviewer (NPM) in the context of setting the scoring definitions of a unit. In the 
workflow of the Item Management Portal, this step took place between Reconciliation and 
Verification. The TBTE essentially is a restricted version of the CBA ItemBuilder that does not 
allow for any change of layout and so on of an item other than changing text blocks. This is 
illustrated in Figure 6.4. 

Figure 6.4: Textblock Translation Editor 

  
 
The TBTE was used to transfer the text blocks defining correct and incorrect parts of a 
highlighting interaction – see the chapter on scoring for details. The user could see both the 
original text and the translation and select one text block after the other. On the right side the 
original text block definition was shown. This was to be transferred to the translated text on the 
left side of the screen. Afterward the new text blocks became an integral part of the automatic 
scoring of the translated item. 

6.3 Support tools 
Support for users and stakeholders in PIAAC was mainly provided online, via mail and 
preferably via an instance of the ticketing portal OTRS (Open Ticket Request System). OTRS is 
an open source problem reporting system. More information is available at http://www.otrs.com. 

http://www.otrs.com/�


Survey of Adult Skills Technical Report 6 Chapter 6 

Figure 6.5 shows an example view of the OTRS system. The image is taken from the OTRS user 
manual. The OTRS system could be used via any browser and/or via mail exchange. During the 
field phases, additional phone support was offered. The phone support was backed by the OTRS 
to make sure all support cases were stored in a single location for later reference. 

Figure 6.5: Generic OTRS Ticket (from OTRS Manual) 

 



Survey of Adult Skills Technical Report  1  Chapter 7 
 

Chapter 7: Development of the CAPI Questionnaire System 

Thibaud Latour and Raynald Jadoul, CRP; and Mike Wagner, ETS 

7.1 Introduction 
This chapter describes the CAPI system that was used to implement the BQ of the PIAAC survey 
from a design and operational viewpoint. Because the CAPI system was built on TAO, and 
because TAO is intrinsically built around knowledge technologies, the general rationale of the BQ 
was for it to operate as a knowledge elicitation tool organized as an interview and implemented as 
a workflow (WF). 

In knowledge technology terms, elicitation consists of populating a general model with everything 
one wants to know about particular topics, with specific data on particular observations. 
Technically, the information sought can be formalized as a knowledge model called an ontology. 
In a nutshell, an ontology formalizes a shared understanding of a domain by identifying a 
hierarchically ordered set of abstract concepts, the relationships tying those concepts together, and 
the properties that characterize them. In addition, concrete instances of the model are considered to 
describe particular individuals defined by the abstract part of the ontology. Giving a concrete 
example of a concept by creating a corresponding individual defines its nature. Specific values for 
each of the properties are assigned for concepts. The descriptions of these individuals are also part 
of the ontology.  

In PIAAC, the CAPI system was conceived as a tool to describe these individuals as instances in 
an ontology corresponding to the BQ framework. Building such a tool involved creating the 
ontology with the knowledge domain corresponding to the BQ framework and properties of 
concepts associated to BQ variables; associating to properties some tools to collect the 
instantiation values (the questions and the questionnaire); organizing these tools in a consistent 
sequence (the interview process); and reporting the collected data. The following sections describe 
in details the specifications of the CAPI system to deliver the BQ in the household and how it was 
implemented into TAO.  

7.2 CAPI system specifications and features 

7.2.1 Overall description of the system 
The overall goal of the BQ CAPI system was to support the data collection in households during 
the survey as well as support the creation of complex questionnaires. The system was designed for 
a series of different users such as system administrator, BQ authors and interviewers. To specify 
such a tool, and in order to capitalize on the experience gained in the ALL survey, a group was set 
up by the PIAAC Consortium gathering specialists from the Australian Bureau of Statistics, 



Survey of Adult Skills Technical Report  2  Chapter 7 
 

Statistics Canada and Westat working in close collaboration with the teams at the Research 
Institute Henri Tudor, DIPF and ETS.  

From a functional point of view, the CAPI system included a series of components supporting the 
authoring of the different elements of the questionnaire, that is, the questions and possible answers, 
as well as the specification of the question sequencing, along with translation in all the PIAAC 
languages and maintenance of successive versions. The system also supported the interview by 
presenting the questions to be read to the respondent by the interviewer according to the sequence 
defined by the BQ designers. Because countries had different constraints and processes regarding 
their national surveys and privacy regulations, the CAPI system enabled specific initialization 
decided at the level of the National Centers (NCs). The system also proposed a series of tools to 
help the interviewer and collect his or her remarks during the interview process. 

The whole system supporting the PIAAC data collection on the field was run on laptops. As for 
other technological components, a series of technical and operational requirements were specified 
both for the implementation of the CAPI system and for the countries that had the responsibility to 
buy, set up, operate and maintain the hardware devices for their interviewers. Among these 
elements, security issues in terms of data confidentiality and integrity were scrutinized carefully. 
The usability, including the careful internationalization of the system for the interviewer, was also 
considered as they constitute an important factor that impacts the quality of the collected data. 

Some countries were not equipped with a case management system suitable for PIAAC. To 
provide basic case management capabilities to these countries, basic functionalities were also 
envisioned. 

The CAPI system was a standalone system that ran on a virtual machine (VM) within a laptop. To 
ensure that the countries were equipped with hardware that was sufficiently powerful with respect 
to the system, a questionnaire was elaborated for countries to describe the hardware they expected 
to use. In general, the system was not too demanding and modern laptops were sufficient, with a 
preference for fast CPU machine to accelerate the latency of the graphical user interface. Indeed, in 
order to control the overall duration of the interview, to keep the respondent focused, and to enable 
the interviewer to chain questions fluently, the Consortium fixed the maximum acceptable 
duration of the period between the validation of an entry and the display of the following question 
at two seconds. This latency included all intermediate response processing, that is, for branching or 
preparing precomputed responses.  

The Linux Debian Open-Source Operating System (OS) was chosen for the VM and VMware, 
more particularly VMware Server – compatible with all standard host machines with OS Windows 
2000, XP or Vista; MacOS; or Linux – was the selected VM technology. To keep the system as 
general as possible with respect to the various devices and softwares used by countries, the 
communication between the VM and the host system (on which countries were able to deploy their 
own third-party application such as case management systems) was restricted to file exchange and 
minimal script calls.  

The internationalization and the management of languages and scripts were of utmost importance 
in PIAAC. Even if the CAPI screens were designed to trained interviewers solely, it nevertheless 
would strongly impact the quality of the interview and the collected data. All characters were 
encoded in UTF-8 (Universal Character Set Transformation Format – 8-bit). The preferred 



Survey of Adult Skills Technical Report  3  Chapter 7 
 

communication file format was XML, while CSV was also used for import and export, and ASCII 
text files were sometimes used to exchange small chunks of data during runtime. The translation 
system was based on exporting and importing an XML-based format called XLIFF (XML 
Localization Interchange File Format, see 
http://developers.sun.com/dev/gadc/technicalpublications/articles/xliff.html) that is compatible 
with the usual translator computer-assisted translation tools.  

In order to ensure high quality and reliability standards for the collected data, security aspects 
attached to the CAPI system were thoroughly addressed both in terms of confidentiality integrity 
and accessibility. Data confidentiality was ensured by full encryption of all data and 
communication on the interviewer laptop as well as between the interviewer laptop and the 
consolidation points (at both national and international levels). The internal communications 
between the components of the VM and between the VM and external third-party applications that 
could run on the interviewer laptop depended on country requirements. To ensure data integrity 
and accessibility, a complete crash recovery system was set up. If the system crashed during the 
interview, it was possible to restart the questionnaire at the level of the last answered question and 
to provide information to the interviewer about the parts of the questionnaire that were already 
answered, the last answered question and the active language. The system also blocked most 
functionalities that did not pertain to the interview to avoid accidental termination of the CAPI 
program by the interviewer during the interview. However, if accidental termination happened 
anyway, the recovery system enabled resuming the system and the ongoing interview. Such a 
system was made possible using a fine-grained and very frequent input data auto-save capability. 
Auto-save was activated at the level of each input field every time the interviewer selected/entered 
input in a given question. Data integrity controls were also enabled by providing comprehensive 
log files of timestamped events and data at both question and flow levels for future external audits. 

The CAPI system maintenance was ensured at three different levels: on the host system itself and 
the VMware software; on the hosted system and the associated software such as the Apache Web 
server, PHP and MySQL database; and at the application level, together with the configuration and 
collected data. The last two levels were maintained using versioned VM images and patches 
provided by the Consortium, while the first level was left under the responsibility of the countries. 

Fluency of the interviews was also carefully addressed by providing to the interviewer a highly 
usable system with standardized and simple interface design, coupled with a comprehensive 
training of the interviewers. The data input mode was designed to be as easy as possible for 
interviewers. Indeed, the burden of using external devices such as mouses was eliminated by 
allowing the interviewer to input data, navigate in the question flow, and trigger functionalities 
exclusively with the keyboard. When answering questions with predefined responses, the 
interviewer was not forced to sequentially navigate through the list of options. Typing in the 
numeric code of the answer option on the keyboard automatically checked the corresponding 
value. Open questions with alphanumeric inputs worked the same way. Predefined standard 
answers such as refusal to answer or “don’t know” answers were made accessible using shortcut 
keys. In a similar fashion, triggering functions such as: pausing or leaving an interview, 
introducing comments and remarks, requesting help from the system or about a question, or 
navigation functions through the question flow (such as going backward and forward) in the 
questionnaire were also made by pressing shortcut keys on the keyboard. Along with some layout 
skins and question presentation conventions, the definition of these keys and shortcut mappings 



Survey of Adult Skills Technical Report  4  Chapter 7 
 

were made configurable for countries willing to customize them following their own interview 
standards. The overall design of the user interface was created with input from PIAAC participants 
in Australia, Canada and the United States. 

In many situations, the respondent spoke more than one language with various fluency levels. 
Within the scope of PIAAC languages decided by countries, the system allowed the interviewer to 
switch to another questionnaire language that best suited the proficiency level of the respondent, 
independently of the system interface language used by the interviewer. Similarly, the interviewer 
had the ability to modify the interface language according to circumstances.  

7.2.2 Running the questionnaire 
The PIAAC CAPI system enabled the definition and execution of complex questionnaires that 
included conditional paths depending on previous answers provided by the respondent and a series 
of adaptive features that supported the interviewer during the whole interview process. Central to 
the design was the need to keep the interviewer focused on asking the question and collecting the 
answers from the respondent swiftly. To achieve this, strong support from the system had to be 
provided to avoid distracting the interviewer with unnecessary system manipulations, controlling 
the flow of questions, and ensuring response consistency by providing a series of automatic 
features. The BQ and the system were thus designed to include straightforward question types, 
navigation facilities, consistency checks, precalculated answers, adaptation of sentences to be read 
depending on the respondent qualities and previously collected information, and contextual 
information display and gathering functions. 

Figure 7.1: Screenshot of a multiple-choice question illustrating the main questions components 

 

The BQ included several classical types of questions in terms of collected values, association with 
variables and in terms of layouts. Each question was associated to one or more variable. 
Depending on the nature of the variable, the associated value was a numeric response code, 
possibly associated to an alphabetic string or piece of text, or a numeric string. Whenever the range 
of possible value was closed and predetermined, a series of possible answers was provided along 
with their corresponding response code.  

The system accepted both single-choice and multiple-choice questions, as illustrated in Figure 7.1. 
On the top, the question code was displayed along with the question texts to be read by the 
interviewer. Underneath the questions displayed instructions to the interviewer in a standardized 
color code (blue) indicating that the text should not be read. The series of options were provided 



Survey of Adult Skills Technical Report  5  Chapter 7 
 

with their response codes, among which the last one would be further specified. The globally 
predefined answers were displayed as the “DK” (don't know) and “RF” (refused) button associated 
with keyboard shortcuts. Navigation buttons were located on the left (back) and on the right 
(forward) of the screen. Response codes and navigation actions could also be entered using 
keyboard shortcuts.  

Open questions collected textual or numerical answers. In many cases, free-text entries were used 
in conjunction with the fixed predefined answers to enable expanding the predefined list with new 
answers. In addition to the question-level coded answers, the system provided a series of globally 
defined answered to collect nonresponse for refusal or because the respondent did not know the 
answer. Responding to some questions was optional, but usually most questions were mandatory.  

Figure 7.2 shows how mandatory questions were managed. Whenever more than one variable was 
associated to a question, various layout were available, among which was the table or array 
presentation. When meaningful, related questions scan were kept together in question blocks that 
were displayed together on a single screen. The visual layout was standardized with two basic 
display types indicating to the interviewer if the text should be read loudly as is to the respondent 
or it the text was an indication to the interviewer that it should not be read to the respondent.  

Figure 7.2: Screenshot of a mandatory question  

 
 

The question sequencing in the PIAAC BQ followed a complex set of branching rules based on 
variables, either collected or calculated during the interview, loaded at initialization, or set up as 
global constants. Branching rules consisted of logical expressions that triggered a jump to a target 
question when a condition specified as a logical expression on any single variable or a combination 
of them was evaluated as true. Contrary to some other well-established CAPI systems, the one 
built on TAO for PIAAC did not evaluate the rule prior to displaying a question as a display 
condition or a skip rule. In the PIAAC system, the branching rules were always evaluated after the 



Survey of Adult Skills Technical Report  6  Chapter 7 
 

question was answered to determine what question to display next. In the absence of routing 
definition, the system assumed a linear sequencing and proceeded to the next question in the 
questionnaire definition order. Depending on country adaptations, the question flow and routing 
definition differed substantially from the flow of the international master BQ. 

In case the respondent made a mistake or wanted to revise one of his or her previous answers, or 
when a consistency check forced the revision of a previous question, the system enabled going 
backward in the interview to modify the response. Such operation was tracked for later quality 
audit, and, when proceeding forward again, the routing was evaluated again with respect to the 
new data. Whenever the new question path differed from the previously explored one, all impacted 
values were invalidated but kept in the database.  

Figure 7.3: Screenshot of a numeric entry to which is associated a range constraint and a consistency 
check 

 

In addition to the internal consistency of variable inputs that were defined as constraints (such as 
numeric ranges or string length – for instance, when asking the birth year of the respondent as 
illustrated in Figure 7.3 – where the numeric value must be in a certain range), the consistency of 
responses with respect to context variables or previously collected data was maintained throughout 
the interview to avoid contradictions. These checks could be defined at the level of each question if 
needed. They were defined with a logical expression based on variable values and state, which 
triggered, if evaluated as true, the display of a piece of text explaining the nature of the problem 
and the set of previous questions that contradicted the current answer. Figure 7.4 illustrates the 
detection of a consistency violation concerning the age of the respondent. The BQ definition 
enabled specifying if corrections were mandatory or not. In the former case, the interview could 
not go further without eliminating the contradiction in either the previous or current responses. 
Similar to branching rules enabling the calculation of question routing, the consistency checks 
were evaluated after the question was answered before proceeding to the next question. 



Survey of Adult Skills Technical Report  7  Chapter 7 
 

Figure 7.4 Screenshot of an edit screen appearing after violation of a consistency check 

 
 

In some cases, the value of variables could be inferred from previously collected data. These 
situations were defined using inference rules, or auto-filling rules. Such rules were built on a 
logical expression based on variables that triggered the assignment of another variable if the 
expression were evaluated as true. The calculated value was obtained using a combination of string 
and arithmetic operators on other variable or constant values. Because inference rules were 
independent of the routing, auto-filled variables were sometimes needed irrespective of the 
previous step in the flow. Therefore, such rules could be evaluated before of after the display of the 
question to which they were associated. The value of the inferred variables could be used 
subsequently in any routing, consistency check or adaptive text. 

Adaptive texts were specified as dynamic text rules that enabled substituting strings or substrings 
using variables or conditions on preexisting data. Adaptive texts were used to display the texts for 
the interviewer in the exact form they were to be read, taking into account the precise context of 
the interview. They were intended to prevent the interviewer from making on-the-fly adaptations 
of the discourse and maintaining good fluency of the interview. Typically, the adaptation 
concerned temporal context, taking into account the situation of the respondent (displaying “When 
you were at school” if the respondent left school, instead of “At school” if the respondent was still 
a student), or took care of the gender and, in some cultures, of the polite address depending on the 
respondent’s age.  

Dynamic text provided a specific format in order to specify which part of the text had to be 
replaced or not, following a set of conditions. For instance, if the gender was coded as female, 
some parts of the question text had to be adapted accordingly. In the BQ, and in order to maintain 
the clarity of the text, the definition of the rule was independent from the string substitution. In the 
PIAAC system, only a variable was included in the text constant as a placeholder for the 
substitution. The content of the variable was obtained using an inference rule that was typically 



Survey of Adult Skills Technical Report  8  Chapter 7 
 

evaluated a priori, that is, before displaying the question. While all other rules were only 
dependent on country adaptation and related to the structure of the questionnaire, dynamic texts 
modified the content of the questions and were also language-dependent.  

Such dependency had several consequences: The localization of the placeholder on the constant 
part of the text could vary from one language to another (according to the structure of the 
sentence), and some dynamic adaptations could require a different number of variables in different 
languages (due to conjugation for example). In principle, for a given piece of text to be translated, 
the definition of the required variables, their localization in the text, and the specification of the 
rule condition was part of the translation and should have been made by the translator. However, 
most translators were unfamiliar with the formal aspects of inference rules and string substitution. 
An easier solution was put in place where the entire piece of text was changed according to the rule 
for a predefined set of situations. For each situation (defined in the form of a hidden predefined 
rule), the translators were asked to proposed complete texts for all variations. The translated files 
were then post-processed to generate the correct inference rule and substitutions in the BQ 
definition. 

Besides the content of questions, predefined answers and response codes, or rules, the system also 
enabled authors to define instructions related to the questions. Such instructions were located on 
the screen according to the reading flow of the interviewer – before the question text, after the 
question text, and after the response area. The objective was to facilitate the interviewer reading 
down the screen and getting the instructions in order related to what he or the respondent had to do. 
For example, an instruction directing use of a show card was given before the question text. This 
prompted the interviewer to supply the respondent with the show card before proceeding to 
reading the question. The most common instructions, directing the interviewer on what to do to 
complete the question, came after the question text. For example, a special coding or probing 
instruction may have fit in that location. Having read the question, the interviewer received 
instructions on how to handle input or question follow-up in position with its relevance. 
Instructions after the responses were special to guide interviewers on what to do next. Rich text 
was used as a way to control the visual presentation of the instructions for the interviewers.  

In addition to on-screen instructions, the system also enabled BQ authors to create supplementary 
helps and instructions that could be consulted optionally by the interviewers. Such helps usually 
consisted of more precise definitions of some concepts mentioned in the questions that the 
interviewer could use to give precisions to the respondent. The question-related help material was 
made visible in a modal window that popped up when the user requested it. 

7.2.3 Running the interview 
The CAPI system could be initialized by importing a set of predefined variables, for example, 
personal data like name, address, and so on of the respondent. Depending on the countries, these 
data were passed by the basic case management system provided with the PIAAC system, or 
generated from a third-party more sophisticated case management system installed on the laptop. 
When the questionnaire was executed, variables corresponding to initialization data were prefilled 
and usable in rules expressions or visible as prefilled responses to questions. Upon country 
adaptation, the prefilled responses might then be verified with the respondent and corrected as the 
case might be. In case of a breakoff, the questionnaire was populated with responses from the 
previous session when the interview was resumed at some later time. 



Survey of Adult Skills Technical Report  9  Chapter 7 
 

During the interview, the questions were displayed according to the sequence defined in the BQ. A 
priori inference rules were first calculated, if any, and the new variable calculated. Then the text 
substitutions were executed to compose the possible dynamic texts that might appear in any string 
on the screen, be it question, instruction, help, predefined answers, and so on. The substitution was 
also performed each time the interviewer toggled between languages or every time a question was 
revisited during navigation. The later situation could arise if a previous answer was changed that 
modified the context of adaptation of a subsequent adaptive text of a question the interviewer was 
coming back to again. The inference rule could also prefill the answer to the question that the 
interviewer might change.  

Figure 7.5: Screenshot of a checkpoint question that is not read to the respondent but contains only 
interviewer instructions 

 

Once displaying the question, the system showed instructions to the interviewer with a specific, 
regular visual presentation enabling the distinction between different types of instructions and 
questions read to the respondent. Answers might sometimes be read aloud to the respondent, 
depending on similar rendering rules as for questions. As illustrated in Figure 7.5, instructions 
could also be part of special questions that were not read to the respondent but served as 
checkpoints during the interview. The system also provided help buttons to give access to help 
information attached to the system, the interview, the current question and the currently used 
interviewer interface at any moment during the interview. Figure 7.6 shows an example of help 
material provided to the interviewer. 



Survey of Adult Skills Technical Report  10  Chapter 7 
 

Figure 7.6: Screenshot of a model screen displaying help material to the interviewer  

 
 
The system checked whether input constraints were met when the interviewer entered inputs with 
the keyboard. Such verification prevented the interviewer from skipping a mandatory input field or 
entering values that were not compliant with a mask, a set of acceptable values, a field length 
limitation, or a numeric range. The check was made on the client side before sending the value to 
the server. Whenever a constraint was violated when the interviewer validated the response and 
tried to proceed to the next question, a popup ID displayed explaining the constraint and asking for 
the answer to be modified accordingly. 

After the interviewer introduced the answers of the respondent using the various response fields 
and codes and pressed the next question key, the system evaluated the consistency checks that 
might have been specified for that answered question. Whenever the consistency rule was violated, 
the system produced two types of messages: soft edits and hard edits. Edits are feedback messages 
presented to the interviewer to report an inconsistent response. They resulted in a pop-up 
overlaying window with a message to the interviewer identifying the problem and explaining how 
to fix it. Soft edits identified a range of consistency problems that did not have to be resolved for 
the interview to continue. In most cases the interviewer was presented with options for resolution 
that included a means of ignoring or suppressing the edit. In contrast, hard edits identified 
consistency problems that needed to be resolved for the interview to continue (this included 
mandatory questions). When edits were resolved, the system checked for the existence of a 
posteriori inference rules and eventually executed them if necessary.  

Once the interviewer instructed the system to reach the next question, if a branching rule was 
defined, the system proposed the next question according to the branching rule. If not, the system 
jumped to the next question in the default path, that is, in the path defined by the question 
definition order. 



Survey of Adult Skills Technical Report  11  Chapter 7 
 

At any time during the interview, the system allowed interviewers to write down comments about 
the interface or the question and to modify the comments they wrote. The comment content 
specified its scope and the diffusion level (private, public, other groups) as shown in Figure 7.7. 
The system also recorded the event and the timestamp, as well as the author of the comment. In 
some circumstances, the interviewed needed to be paused by the interviewer and further resumed. 
Pausing an interview generated a trace in the log for future audit and the interviewer was invited to 
introduce a comment regarding the interruption. 

Figure 7.7: Screenshot of the interviewer comment interface 

 

The interviewer also had the option to terminate the interview at any moment. Irrespective of the 
fact that the questionnaire was terminated prematurely (by the interviewer or caused by a crash) or 
normally at the end of the question flow, the system assembled all the log information in a series of 
output files and triggered the export of them to the host system or to the case management system.  

7.2.4 Interview administration 
Basic administration features were provided in the PIAAC CAPI system, such as a secured 
password-based interviewer authentication managed at the country level. The interviewers for a 
given instance of the system were created by the system administrator. The administrator also 
assigned and scheduled the interviews for particular interviewers.  

The administration features of the system also included a basic CAPI system for countries that did 
not have or wish to use their own. The case management system managed the interview 
assignment for the interviewers. It showed them pending cases and upcoming ones and let them 
start, pause and resume their assigned cases. Figure 7.8 shows the interviewer initialization screen, 
which was made available in different languages depending on the country language profile. The 



Survey of Adult Skills Technical Report  12  Chapter 7 
 

case management system also took care of the interview initialization by importing the 
initialization file as described previously. 

Figure 7.8: Screenshots of the interviewer initialization screen in English (top) and French (bottom) 

 

 

When cases were completed, it collected the termination codes and comments from the 
interviewer explaining the context of case termination. These codes were included in the export 
file of the CAPI system. 

In addition to driving the data collection for the BQ, the TAO workflow engine on top of which the 
CAPI system was built was also used to drive the entire process of the PIAAC survey in 
households. Indeed, a global workflow was created for the whole process that included the specific 
one defining the BQ and described in this chapter. Such overarching workflow piloted the survey 
from the very beginning by sequencing the BQ, the ICT-Core components, the routing of the 
respondent to either CBA or PBA instruments, and the final section for the interviewer. The 
ICT-Core components and the CBA instruments were delivered as external activities triggered by 
the workflow.  



Survey of Adult Skills Technical Report  13  Chapter 7 
 

7.2.5 Support for PBA instruments 
PBA instruments were delivered separately in paper booklets handed over by the interviewer to the 
respondent. However, some instructions were given by the interviewer at some point, for instance, 
to instruct the respondent to start a section or turn a page, or to provide him or her with a ruler or 
calculator. Routing rules were also used to manage the assignment of particular booklets to 
respondent according to the survey design. To each question of the PBA instrument corresponded 
a question in the workflow engine where the interviewer had to code whether the respondent 
provided an answer or not, or refused to answer. Provided that interviewers were trained properly, 
introducing such code in real time while the respondent was solving the tasks, this protocol 
allowed for recording timing information for the PBA instrument in the same fashion as for the 
CBA. 

7.3 CAPI runtime 
The PIAAC CAPI System Runtime component consisted of an instantiation of the TAO workflow 
engine running within the VM of the interviewer laptop, which executed a series of embedded 
workflows and activities made accessible through a Web browser and served by local servers and 
databases. The PIAAC VM consisted of an operating system fine-tuned for PIAAC operations 
(lightweight and locked, including only the necessary third-party software and system services), a 
full TAO platform running under this OS, as well as TAO third-party extensions such as the CBA 
Item Runtime Environment. The TAO platform contained all the necessary information to run:  

1. The global PIAAC interview workflow describing the case initialization, the disposition 
codes, the ICT-Screener, ICT-Core and ICT-Tutorial, the navigation among instruments, 
the booklet selection controls, and the interviewer instructions for PBA booklets; 

2. The BQ; and 

3. The cognitive instruments including general and domain-specific orientations. 

Among the cognitive instruments, PSTRE was managed entirely by TAO, while reading and 
literacy instruments were partly delivered by TAO and the CBA Item Runtime Environment. 

While TAO piloted the global survey workflow execution of the study, strictly speaking, the part 
of the system pertaining to the CAPI essentially covered the way TAO was configured to support 
the questionnaire definition (ontology and related question definitions) and the questionnaire 
execution (the interview process and the rule system). In this section, we provide an overview of 
these core elements of the CAPI runtime. 

7.3.1 Components 

7.3.1.1 Ontology management and question definition: Generis4 
As mentioned earlier, TAO is a CBA platform entirely built on knowledge technologies, and 
particularly constructed around data structured according to the RDF and RDFS standards 
(Resource Description Framework, 2004) that represent the foundation layers of the Semantic 
Web. RDF and RDFS, called RDF/S when considered together, are XML-based languages 
designed to formally describe ontologies. Ontologies are shared conceptualizations of things that 
exist in a particular domain of interest (Sowa, 2000; Mahalingam & Huhns, 1997). They describe 



Survey of Adult Skills Technical Report  14  Chapter 7 
 

explicitly the structural part of a domain knowledge in a knowledge-based system using languages 
with precise primitives (Maedche & Staab, 2001) and associated semantics that is used as a 
framework for expressing the model (Decker et al., 2000), among which concepts, properties of 
and relation between concepts, as well as instances of concepts. The formal character ensured that 
an ontology was machine-processable and exchangeable between software or human agents 
(Guarino & Giaretta, 1995; Cost et al., 2002). In some pragmatic situations, it simply consists of a 
formal expression of a metadata framework to describe information units (Kahng & McLeod, 
1998). 

The kernel of TAO is an ontology management system called Generis4 (standing for GENERIc 
System for Storing, Structuring, and Sharing knowledge) manipulating RDFS ontologies that 
structure explicit RDF data and inferred RDF statements according to the RDFS entailment rules, 
stored in a schema-less relational database. In addition to data-related services, Generis4 also 
offers a framework to develop Web applications based on Semantic Web technologies, exploiting 
specific business logics and their associated ontologies in the form of extensions. TAO is such an 
application based on a series of extensions bearing their own ontologies defining the domain and 
subdomains of CBA, along with the related application logics and user interfaces. In its basic 
version, TAO is composed of extensions related to the management and definition of items, tests, 
test takers, groups of test takers, delivery scheduling, and results export, together with a workflow 
engine. 

As part of TAO, the CAPI system is itself built as an extension exploiting the capabilities of the 
workflow engine. In the CAPI system, the respondents were considered as test takers bearing a 
series of characteristics describing the information that the PIAAC survey intended to collect 
about them and their context – the respondent model and their context form the ontology of the 
PIAAC survey. Mapping the variables with the characteristic, the collection of the PIAAC data 
was thus viewed as eliciting knowledge about respondents, that is, a means to instantiate the 
PIAAC ontology for specific respondents for which precise values were assigned to their 
characteristics. In TAO, the graphical interfaces to edit the ontologies and their instances were 
generated automatically from the model. So were the questions displayed in the interviewer CAPI 
interface, based on a specific question model and templates to display them on screen.  

In Generis4, to ease the data and model consultation and editing, users could define specific 
subparts of the models in the form of hyper classes (they roughly corresponds to views in relational 
databases). To render the hyper classes for consulting and editing purposes, users could also 
associate hyper views to them. Hyper classes could be instantiated in the form of hyper instances. 
A Generis4 service enables one to display hyper classes in edit mode rendered according to its 
hyper view, and fill in the editable fields to create an hyper instance. In the CAPI system, each 
question corresponded to an hyper class that was instantiated as a hyper instance for each 
interview. 

In normal use of TAO and Generis4, the different ontologies and their instances were defined 
using the graphical user interface (GUI) of the system. Performing such knowledge modeling 
operation requires advanced modeling skills for which PIAAC personnel in countries had low or 
no competency. In order to facilitate the description of questions and their presentation and 
execution options, the Consortium provided a specific import/export format of the BQ, together 
with distinct ad hoc authoring, rendering and management tools. The Consortium took care of 
importing the files prepared by the countries into TAO. 



Survey of Adult Skills Technical Report  15  Chapter 7 
 

7.3.1.2 Workflow management and rule system: TAO WF engine 
As already explained, the sequence of questions in PIAAC was managed as a workflow where 
each question represented a data collection activity that fed the corresponding ontology element 
representing a survey variable. The TAO workflow system consisted of two main parts dedicated 
to the workflow authoring on one hand, to the workflow execution on the other hand. Depending 
on country adaptations, the flow of questions might vary significantly between countries. This 
variability prevented the Consortium from centrally building a single workflow, which resulted in 
the need for countries to edit their own one. As for the question definitions, defining a workflow 
was not an easy task and required technical competencies that were not necessarily present in each 
national team. The Consortium thus provided tools to define the question flow together with the 
question definitions. 

A workflow in TAO was defined as a set of activities sequenced by connectors. Activities are 
placeholders for services that can be of two distinct types: interactive and noninteractive. The 
former services correspond to all services provided by TAO through a GUI. Indeed, in addition to 
the classical GUI, TAO exposes all its atomic management activities, such as item authoring, item 
metadata editing, and so on as services that can be embedded in workflow activities. Besides TAO 
functionalities, hyper class services can also be embedded in activities to display forms that feed 
specific parts of the ontologies. This is the way the questionnaire was executed in the PIAAC 
CAPI system. Besides TAO services, other interactive services can also be embedded in workflow 
activities. We used this capability to embed remote item execution from the CBA item runtime in a 
seamless way for the user.  

Noninteractive activities mainly consist of background calculations or calls to distant Web 
services. In the CAPI system, such activities were used in the process to execute inference rules 
that precalculate some variables from previously collected data. Noninteractive activities were 
also used to trigger system functions at relevant moment during the interview, such as the 
generation of the export file at the end of the interview.  

Activities were sequenced by connectors. While in principle, there existed a split (to create parallel 
flows) and joint (to gather different incoming flows in a single one) connectors, in the CAPI 
system, none of these were used because the interview only consisted of a single, possibly 
branched, path. Therefore, only linear connectors bridging one activity to the next and conditional 
branching connectors were used. The later ones defined possible branches that could be taken 
according to the evaluation of a logical rule. The conditional branching connectors were 
intensively used in the PIAAC BQ, as well as to implement the testlet level adaptation of the 
cognitive instrument. In order to ease the question flow authoring by the countries, the Consortium 
created a simple rule language that is presented further in this chapter. 

7.3.2 Import, export and interface 
The communication between any external software, installed on the host system, and the TAO 
platform, installed on the VM, could be made either by exchanging data or by triggering services.  

All data imported or exported by the TAO platform was formatted in XML files. All XML files 
were always validated with respect to their corresponding schema described in an XSD file. As a 
consequence, if an invalid XML file was provided to the system, it was not imported and an error 
was triggered. Imported and exported XML CAPI variable data files were structured according to 



Survey of Adult Skills Technical Report  16  Chapter 7 
 

the same XML schema, described in a XSD file. All data that were either imported or exported are 
located in folder structure on the host system which was replicated into the VM. An automated 
mechanism ensured the synchronization of both folder systems. The shared folder structure is 
described in Figure 7.9. 

Figure 7.9: Structure of the shared folder between the PIAAC VM and the laptop host system for file 
exchange 

 

Only three folders were used to administer the VM, import data and export results during field 
operations: 

1. Output. This folder contained all data collected in the PIAAC survey in XML format 
suitable for exploitation and analysis. While these data could be further reimported into 
TAO, they were not exhaustive enough to enable restoring a case or a VM in a given state. 

2. Input. This folder contained all data that would be imported into the TAO platform when it 
was launched. These data were either provided by the National Center and copied into the 
exchange/import folder, or directly written by a case management system and/or a screener 
installed on the host system as external software. 

3. Administration. This folder contained all data enabling case and full system migration or 
backup, which preserved the current state of the system. These files consisted of database 
SQL dumps. They were intended to be used for survey operation management only. 

The other folders were used for technical maintenance. 

A series of services provided in the PIAAC VM could be triggered from the host system. 
TAO-related services were triggered using an HTTP request with parameters passed via the URL. 
These services were made accessible from outside the VM using scripts that could be invoked 
from the host system either manually, or triggered by an external application such as a case 
management system. VM administration services were triggered using scripts. 

7.3.2.1. CAPI initialization 
In many cases, the interview started with a series of predefined information relative to the 
respondent or the case administration (for instance in the Field Test, some random assignations of 
BQ parts and assessment instruments were predefined and used to configure the workflows for 
each case), either generated by the case management system or preloaded by the countries in the 
interviewer laptops. To enable this, an import function was put in place to parameterize the 
country-adapted workflows (globally or on a case-by-case basis) and prefill variables from 
registry data or case management systems. Such imported data were placed in the shared input 
subfolder, which was systematically read and processed by the TAO workflow engine at startup 
time. 



Survey of Adult Skills Technical Report  17  Chapter 7 
 

The input subfolder contained at least one global initialization file, and optionally a series of 
case-related input archives identified by the respondent’s personal identification (PERSID) 
number and containing one or more variable files. 

The initialization file was a unique mandatory file present on each laptop. It contained the 
country-specific TAO behavior parameters and general workflow control variables that were 
global from all cases to fine tune the TAO system. It thus represented the default invariant value 
definitions at the level of a country. It was imported each time TAO was invoked, prior to the case 
initialization data. This data could, however, be overwritten by case-specific data that might be 
imported afterward using the case initialization file. The initialization file had the same format as 
the export variable files to guarantee import and export symmetry, meaning that any exported 
variable could be further reimported as an initialization one or vice versa. 

The case initialization was made by importing a series of prefilled variables defined in an archive 
identified by the PERSID of the respondent. As for the global initialization, the file format of the 
variable files for import and export was identical. The case-level input archive contained the 
values of all variables to be imported into TAO. These variables could be any existing variable in 
the BQ, the general PIAAC workflow, the PBA instructions, or the ICT-Core section. Several of 
these variables were mandatory to start the interview and were referred as the case initialization in 
the general workflow. The presence of one or more of these files was checked each time TAO was 
invoked, after having imported the init.xml file. If present, the PERSID variable XML file 
corresponding to the current interview was loaded with precedence on those taken from the 
initialization file. The case initialization files could either be written by the case 
management/screener external system (depending on countries), or directly uploaded from the NC 
as part of the case assignment, or collected by the interviewer through other means (mails, CD, 
memory stick, etc.) and copied into the import folder using a script available on the host system. If 
no such file was associated to a case, TAO then started with the case initialization section of the 
general workflow.  

The launch of the VM could be triggered either on start-up, manually, or from third-party 
application running on the host system (case management system, screener, etc.). As a Web 
application, TAO was launched using an URL that could optionally by complemented by a 
particular PERSID. The presence or absence of the parameter depicted different situations and 
induced different file import sequences, as well as different user interactions. 

Invoking TAO with no predefined case was the simplest method for countries that did not have a 
third-party client infrastructure to be executed on the interviewer machine. Such a process 
occurred in two basic situations. First, when the case assignment was made using lists sent to 
interviewer on a paper format, such as Word documents or Excel worksheets, no case initialization 
file preexisted in the input shared folder. Then, an assignment sheet provided to the interview with 
the minimal required information necessary to initialize a new case using the dedicated section of 
the interview. In the second situation, the case assignment was made by the NC, which sent (by 
electronic mail; shipment of physical storage devices such as disks, CD, or memory sticks; by 
download from the NC-secured website; by network-based folder synchronization, etc.) one or 
more case initialization files in addition to the global initialization one. The case initialization files 
then contained the minimal required information necessary to start cases. And depending on the 
global parameterization, the imported case variable or the missing information could be verified or 
collected through the case initialization section of the interview as the case was. 



Survey of Adult Skills Technical Report  18  Chapter 7 
 

Skipping the case initialization by setting the global parameterization variable assumed that the 
required case variable was imported. Those mandatory variables were the PERSID; the 
respondent’s name, age, gender, address, telephone number; the randomly preselected CBA and 
PBA booklets (depends on whether the system was configured for the Field Test or the main data 
collection); and in the Field Test, a variable that controlled the 200 rule (see Chapter 14). 

TAO could also be invoked by an interviewer by specifying a specific case. This situation 
particularly arose in countries using their own case management system and possibly their 
household screener. The initialization variables were managed by these applications that generated 
the initialization variable file and launched the CAPI system automatically for the specific case. 
The Consortium also provided simple case management facilities that enabled countries to preload 
a series of initialization files for several cases. The interviewer started the TAO CAPI system with 
an entry point that enabled them to select the case to start (or to resume). 

7.3.2.2 Administration data exchange during and after the interview 
The administration of the machine relative to interviews consisted of the exchange of database 
dump files between TAO and the host machine, via the case management system if any, or in any 
other way countries found convenient. The exchange of the dump file went through the 
administration subfolder of the shared folder. Two dumps could be triggered at any moment during 
the interview: full system dump and case dump. 

The full system dump was made on demand by a component from the host system installed by the 
countries. Its main purpose was to enable the migration of the full system in its current state from 
one VM to another VM, from one machine to another machine. The target VM or machine would 
thus be in the same exact state as the source one. The file contained a full dump of the MySQL 
database where all TAO CAPI data were stored. The dump also contained all the process 
definitions (the PIAAC survey definitions), the workflow definition, all cases, their paths and 
variables. The dump file did not contain the cognitive instrument intermediate results and log files, 
which were managed outside until the booklet execution are achieved. However, the results of 
completed booklets were exported within the dump. 

The case dump was also made on demand from the host system and enabled transferring started 
cases to a different interviewer in its current state from one VM to another VM, from one machine 
to another machine. The target VM or machine would thus contain the case in the same exact state 
as the source one. The file contained a full dump of a particular case from the MySQL database 
where all TAO CAPI data were stored. As for the full dump, the case dump file contained all the 
necessary information to retrieve a case exactly in the same state as it had been, except for the 
cognitive instrument intermediate results and log files of an ongoing case, which were managed 
outside until the booklet execution ended.  

All dumps could also be reimported manually into the VM. This operation was not accessible to 
interviewers but possible only for technicians at the NC level. Dumping the system for 
administrative purposes was made using a series of scripts that could be invoked from the host 
system.  

The VM and the instance of TAO installed therein provided a series of functionalities to control 
the CAPI system. These scripts could be called manually or by other programs on the host system. 
They provided base functionalities to: start the VM with or without specifying a case, at boot time 



Survey of Adult Skills Technical Report  19  Chapter 7 
 

on the interviewer laptop of triggered by an external application; stop the VM gracefully via 
normal shutdown of the laptop (crashed VMs could also be stopped to be able to resume normal 
operation on the next start); start the CAPI system within a running VM with or without specifying 
a case, stop the CAPI system for a specific case or globally; export results for all or a single case, 
import all cases that were present in the input shared subfolder or a specific one, dump the cases 
(all or specific cases) or the whole TAO system; and drop cases for VM cleaning purposes. 

7.3.2.3 CAPI result export 
Because the TAO workflow drove the entire case, and not only the BQ, the exported files 
contained all the information pertaining to a case. They were exported in the shared folder between 
the PIAAC VM and the host system. The export subfolder contained a series of archives, each 
gathering the output of terminated cases at normal completion of TAO, that is, when the data 
collection was interrupted temporarily (when the interview was paused) or definitively (when the 
interview was terminated at the end or before the end) by the interviewer. Each case was exported 
as a separate compressed file package named according to the respondent PERSID. Depending of 
the interview completion status, the exported archive might contain zero, three, four or five 
different files. 

The archive contained zero files when TAO exited abnormally and did not export any file. 
Relaunching TAO triggered the internal recovery mechanism that did not make use of the output 
files. The partial data could, however, be exported manually using the export services provided in 
the CAPI system. The archive contained three files: either in case of normal exit from TAO upon 
premature termination of the interview before or during the cognitive instrument section when 
delivered electronically; or in case of normal termination of TAO when the respondent was 
directed to the PBA delivery of the cognitive instrument. The situation when the archive contained 
four files arose when the cognitive instruments were successfully delivered electronically to the 
respondent but the post-processing of the raw result file (containing the logs) had failed to export 
the data properly. Finally, the archive contained five files when TAO terminated normally, with all 
cognitive instruments delivered electronically to the respondent. 

The five exported files per case contained all data collected during the interview and the 
assessment, together with contextual informations such as the timed log of all events that occurred 
during the TAO execution and information about the valid and invalidated paths followed during 
the interview activity flow. 

In the archive of a single interview, the unique Path file was formatted accruing to an XML 
schema and contains all information regarding traversed valid and invalid paths along the full 
PIAAC workflow (including the BQ, and all other steps of the PIAAC survey). The file thus 
contained the BQ path together with the case initialization, ICT-Core, ICT-Tutorial, ICT-Screener, 
cognitive instruments and paper-and-pencil instruction related paths. It contained the list of 
explored question groups (corresponding to the each step of the interview, materialized by a 
unique screen); for each group of questions, the list of unique questions corresponding to a unique 
variable; and for each question group, a flag specifying if the explored item group was part of the 
valid path or not. Interview steps (question groups grouped as atomic activities corresponding to 
one single screen) covered the whole interview process. If no step of the interview was performed 
(in case of immediate termination of the interview and normal termination of TAO by the 
interviewer), the file only contained the topmost XML tags with no question-related information.  



Survey of Adult Skills Technical Report  20  Chapter 7 
 

The Variable file was also unique in the archive of a single case and contained the values of all 
variables specified in the BQ and the global workflow (according to nationally adapted version 
specifications) in their final state defined into the TAO platform for a given case. It was formatted 
according to a specific XML schema and included the data that were imported together, the 
collected data pertaining to the case initialization, as well as all data collected through the BQ, the 
ICT-Screener, the ICT-Tutorial, the ICT-Core, and the observations from the PBA instruction 
sections. The electronic cognitive instrument information was exported in a separated file in the 
archive. This file constituted the final state of all variables and did not contain intermediate values 
that might have been changed during the process of the interview. The history of change could be 
reconstructed from the log file. 

In addition to variable names and values, their validity was also provided consistently with the 
question flow and rules. Hence, all variables that were assigned a value during import or data 
collection but which finally ended up in a dead branch of the flow, or that were never addressed 
during the interview, were flagged as invalid. At export time, TAO did not clean the data, enabling 
the widest range of post-processing possible. In case there were variables for which no value was 
imported or collected, they were reported using an XML tag with variable name but no value 
attribute. When the variable file was used for import, if no value attribute was provided, the 
variable was ignored. On import, all validity attributes were ignored. 

The log file was formatted according to a specific XML schema and contained the trace of events 
occurring both at the server side (response of the system to user requests) and the client side 
(actions of the user on the interface) pertaining to the case initialization, the BQ, the ICT-Screener, 
the ICT-Tutorial, and the ICT-Core related items, as well as the PBA instructions. All entries in the 
log were timestamped and enabled to reconstruct the entire sequence of user action and system 
responses of the CAPI system. An equivalent logging of events was provided within the cognitive 
instrument result file for further analysis at psychometric level. Except for the cognitive 
instruments (which were operated by the respondent), all actions of the interviewer were recorded 
in the log. This file was also used to generate audit trails for verification of interview quality. 

Cognitive instrument results were exported in a series of separate files corresponding to clusters 
of CBA instruments for a given case. The result consisted of the scores (when scoring was made 
automatically) for all tasks, units, and tests, the PERSID of the respondent, the responses, and 
other contextual information. It also contained the log of all recorded user actions on the interface. 
The result file was exported at the end of each booklet execution, as part of the assessment 
workflow service, before the PIAAC general workflow automatically resumed and proceeded to 
the following survey steps. Crash recovery data were not stored in this file but in a dedicated 
structure enabling recovery independently of result export. 

The raw cognitive instruments result file was seconded by another post-processed file containing 
the CBA Variables only. The supplementary result file contained the same information as the 
previous one, with the exception of logs, which were post-processed to provide meaningful 
additional scoring-related variables, instead of lists of atomic events. It was exported at the end of 
each booklet execution by the assessment workflow service, before the PIAAC general workflow 
automatically resumed and proceeded to the following survey steps. It was produced by a 
post-processing routine that analyzed patterns of events in the raw result CBA file and generated a 
series of variables that were used for further analysis and scoring (in the case of PSTRE). 



Survey of Adult Skills Technical Report  21  Chapter 7 
 

The generation of export files was triggered at each normal completion of TAO, irrespective of the 
case status (completed or not completed). When an interview was started, it could be paused or 
terminated with a complete case or with a partial case (definitive termination before reaching the 
end of the interview). When the interview was paused, the result files were exported with the 
disposition codes relative to the three main survey sections: BQ, ICT-Core and cognitive 
instruments. In the presence of a case management system, the exported codes could be used in 
monitoring processes set up by the countries. Whenever the case was prematurely terminated by an 
interviewer operation, the workflow proceeded to the last activity of the flow relative to the 
section, ensuring the interviewer was presented the correct disposition code entry screen before 
ending the interview. At the end of the interview, whether upon premature termination or normal 
termination with a complete case, the result files were also exported. Resuming a case with the sole 
exported results was not sufficient. Such operation required other information that was stored in 
the database. 

References 
Cost, R. S., Finin, T., Joshi, A., Peng, Y., Nicholas, C. Soboroff, I., . . . Tolia, S. (2002). ITalks: A 

case study in the semantic web and DAML+OIL. IEEE Intelligent Systems, 17(1), 40-47. 
Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J., . . . Horrocks, I. 

(2000). The semantic web: The roles of XML and RDF. IEEE Internet Computing, 15(5), 
2-13. 

Guarino, N., & Giaretta, P. (1995). Ontologies and knowledge bases: towards a terminological 
clarification. In N. Mars (Ed.), Towards very large knowledge bases: Knowledge building 
and knowledge sharing (pp. 25-32). Amsterdam, Netherlands: IOS Press. 

Kahng, J., & McLeod, D. (1998). Dynamic classificational ontologies: mediation of information 
sharing in cooperative federated database systems. In M. P. Papazoglou & G. Sohlageter 
(Eds.) Cooperative systems: Trends and direction (pp. 179-203). San Diego, CA: 
Academic Press. 

Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent 
Systems, 16(2), 72-79.  

Mahalingam, K., & Huhns, M. N. (1997, June). An ontology tool for query formulation in an 
agent-based context.  Proceedings of the Second IFCIS International Conference on 
Cooperative Information Systems. Kiawah Island, SC, 170-178. 

Resource Description Framework (RDF) (2004). Retrieved from http://www.w3.org/RDF/  
Sowa, J. F. (2000). Knowledge representation: Logical, philosophical, and computational 

foundations. Pacific Grove, CA: Brooks Cole Publishing Co. 
 



Survey of Adult Skills Technical Report 1 Chapter 8 

Chapter 8: Development of the Integrated Computer Platform 

Britta Upsing, Frank Goldhammer, Maya Schnitzler, Robert Baumann, Roland Johannes, Ingo Barkow 
and Heiko Rölke, DIPF; Isabelle Jars, Thibaud Latour, Patrick Plichart, Raynald Jadoul and Christopher 

Henry, CRP; and Mike Wagner, ETS 
 

This chapter describes the electronic test delivery system of the PIAAC study. The complete 
delivery system consists of three parts that were installed on the interviewer’s laptop. First, the 
country’s case management system selected and organized the participants in the study and 
interacted with the embedded virtual machine (VM). As this was country-specific software, we 
cannot specify the content of these programs, but we can state that a common interface was 
defined, making access of the PIAAC VM possible. The second part was the VM itself, which 
served as an encapsulated environment to installed software from other household surveys and to 
the different hardware configurations existing in different countries. Third, there was the BQ and 
cognitive items running on the TAO platform within the VM. All these parts interacted; the 
workflow of interaction is described here in Figure 8.1.  

Figure 8.1: Design of the electronic test delivery system 

 

The interviewer laptop ran its normal operating system, the host system, which was supposed to 
be a Windows system (see the technical standards documents). The host system ran optional 
country-specific software such as a country’s case management system and the runtime for the 
virtual machine. 

The virtual machine (DPVM: delivery platform virtual machine) ran within the host system. It is 
called a guest system. It ran TAO, including the BQ and the cognitive items. 

1) Interviewer Laptop: Host System 
• Country-specific software 
• Country’s case management system 
• VMware runtime 

2) DPVM: Guest System 
 3) TAO Platform 

• BQ 
• Cogn. Items 



Survey of Adult Skills Technical Report 2 Chapter 8 

The delivery of the BQ and cognitive instruments was done by means of TAO, which ran within 
the VM. In doing so, there were a minimum of dependencies, influences and interferences 
between the PIAAC delivery system and the interviewer laptop. 

8.1 Development of the virtual machines 
The VMs containing the PIAAC system and items are described here in more detail. 

8.1.1 VM basics and hardware 
All VMs delivered in PIAAC were based on the same prototype VM system. The technical 
details are as follows: 

• VMWare Workstation 6.5-7.x virtual machine 

• Virtual hardware 

• 1 GB RAM 

• Single core processor 

• 40 GB HDD 

- Dynamic allocation 

- 2-3 GB actually used 

• Display 1024 x 768 pixel 

8.1.2 Content of the PIAAC VM 
The operating system running inside the virtual machine was a Debian Linux system. Debian 
ensures a high level of dependability combined with the assurance that no licensing is necessary 
(open source strategy). Unnecessary software of the standard Debian distribution was removed to 
save space. This is an overview of the software components used in the PIAAC VMs. 

Operating system: 

• Debian Lenny 

• Kernel 2.6.26-19 – Aug 2009 

• X Windows 

• IceWM Window Manager 

LAMP stack 

• Apache2 2.2.9-10 

• PHP5.2.11-0.dotdeb.1 



Survey of Adult Skills Technical Report 3 Chapter 8 

• Suhosin-Patch 0.9.7 

• Zend Engine v2.2.0 

• MySQL v14.12 

8.1.3 Development process and automation 
There are different parts of a VM. The base is the “Mother VM.” It contains all common data, 
like the operating system and all software components, which were independent of what country 
used it. This VM needed to be supplied with all country-dependent information and data. 

The Item Management Portal (IMP) held this information. Each country had an authorized person 
adopt items and translations. 

Several servers from the Consortium partners provided all necessary data to the IMP. 

At dedicated points of time or after important updates, two main servers were mirrored for the 
build process. This helped get dedicated versions with timestamps. 

The build system fetched all data from the mirror sites and combined this with the Mother VM. 

This process is denoted in Figure 8.2. 

 



Survey of Adult Skills Technical Report 4 Chapter 8 

Figure 8.2: Development process and automation 

    

  



Survey of Adult Skills Technical Report 5 Chapter 8 

The build system (Figure 8.3) was a collection of scripts, based on the Bourne again shell (bash), 
on a build host. 

Figure 8.3: Build system  

 

The process was triggered by a bash script for mass production. A loop would call for one task, 
which will be described as follows. A template of a Mother VM was copied to a new folder. The 



Survey of Adult Skills Technical Report 6 Chapter 8 

build system started this copy. The VMware VMPlayer software needed an environment to place 
a window. A virtual frame buffer was installed and all graphic output was dropped there. It is 
important to know there was no user interaction possible or necessary. Installing a new Mother 
VM needed a start by hand to ensure there were no error windows blocking the process. The VM 
received a country ID as its name in the configuration file. The VM reading this environment 
variable and contact a script outside via secure shell (ssh). 

This trigger script controlled the process from outside. The advantage of this concept was that the 
messages of the inner scripts were passing the trigger script and could be sent to the originating 
user. The trigger script sent a start mail to the originating user and called a build script inside the 
VM. The IP of the VM was transmitted when the trigger script was invoked. This inside script 
was responsible for several tasks. It fetched all data from the mirrors, did a BQ import and 
configured all locale settings (keyboard, fonts, etc.) 

After this, the VM performed a shutdown, and build task started it up again. This second start 
invoked the cleaning scripts inside. This was done after a reboot, providing the chance to 
suppress the second boot up for debugging purposes. 

Before the VM did a second shutdown, all installation scripts were disabled and a reboot brought 
up a nationalized VM. 

After shutdown, the build script adapted the VM files. Inside the VMX configuration file, some 
parameters were changed and the caches and the snapshot configuration file were deleted. Four 
files remained in the VM subfolder. The last step was to zip the folder and send a notification to 
the originating user. 

8.1.4 VM patching process 

The intention behind the patch mechanism was to have a robust way to modify the system in any 
manner (see Figure 8.4). Maybe it would even be necessary to modify the patch mechanism 
itself. To install a patch, you needed to place a file at a dedicated place inside the VM. This could 
be done with a graphical user interface provided by the Windows-scripts managing software or 
via a command-line interface with secure copy protocol (Linux, use WinSCP or the country-
specific Case Management System (CMS) Tools under Windows). 

The “init” scripts, which were called in the boot process of Debian, had to look for patch files. 
For these purposes, the init script “/etc/rc.local” was modified. If it found files in 
“/var/www/piaac/Exchange/patch,” it then checked each file with a GPG signature, unpacked all 
files inside each zip file and executed a bash script, found inside each patch package. 



Survey of Adult Skills Technical Report 7 Chapter 8 

Figure 8.4: VM patching process 

 

 

 

A patch file contained an executable bash script and a payload. The payload consists of additional 
files that represent the fix itself. These were copied to the destination folder by the bash script. 
This mechanism allowed many things to occur inside the VM such as kernel changes, exchanges 
of tests, updating software and many more. This involved considerable risk if you provided a 
patch file with dangerous contents. There was the possibility of completely destroying the VM. 
To ensure applying a correct patch file, it carried a correct GPG signature. The keys for signing 
were different between the Field Test and Main Study, so you could not install a Field Test patch 
in a Main Study VM. Also it was impossible to install a patch from anyone but the PIAAC 
Consortium. 

After executing the patch bash script, the patch file was moved to the installed subfolder. The 
next reboot would not be able to see old files and try to execute them. 

For building new patches, a patch-build VM is useful. This could be an “old” Mother VM with 
the complete subfolder structure and all keys for signing. It was possible to build patches under 
Windows, but the end-of-line characters in text files were different between Linux and Windows. 
The patch mechanism would be confused by Windows text files. If you used “Notepad+” for 
editing, you could configure this feature to overcome the problems. Other issues were ownership 
and rights of the files inside a patch. Windows users needed to ensure the files would be owned 
by root and that the bash script had execution rights. It was recommended to use Linux or a 
patch-build VM for highest efficiency. 

The content of a patch file was simple. It contained at least two files. The bash script needed to be 
called “execute.bash” and have a file called “description.txt”. The bash script is explained above; 
the description.txt file contained a short description of the function – the involved files and fields 



Survey of Adult Skills Technical Report 8 Chapter 8 

about target countries, provider, builder and date. The content of description.txt was shown after 
reboot of a fresh patched VM in a window. This was managed in the IceWM startup file. 

The patches were created in a numbered order. Because one patch could be dependent on another, 
it was necessary to install patches in a correct order. 

Figure 8.5: Naming of patches 

 

8.1.5 Changes from Field Test to Main Study  
The build chain for the VM was only bug-fixed and some minor changes were done. More 
modifications were applied to the patch mechanism. To avoid the potential problem caused by 
trying to ensure patches were installed in the order they were released (as during the Field Test 
phase), for the Main Study there was no need to take the order into consideration. 

For the Main Study, every new patch included the previously released ones (cumulative patch, 
see Figure 8.6). The VM would know about the so-called patch level, which meant that every 
VM held a list that contained the patches already installed. Patches already installed were skipped 
during the installation process. 

National patches were included in the cumulative patch. A minor “problem” with national 
patches was that they only increased the patch level and did nothing else for countries that were 
not involved. 

The naming of the patches for the Field Test was handled individually. For the Main Study the 
naming was as follows (see Figure 8.5): 

patch-PIAAC_<date>_<responsibility>_<number>.zip.gpg 

where <date> : the release date, format : yymmdd 

<responsibility> : was “global” for patches to be installed by all countries or will be the country 
code for national patches (e.g., “UK”) 

<number> : the release number starting at “1”, format nnnn. The number was increased 
incrementally each time a patch was released.  



Survey of Adult Skills Technical Report 9 Chapter 8 

Figure 8.6: New design of patch mechanism in Main Study 

 

An exception was that national patches released at the same time for the same purpose but for 
different countries had equal numbers. For example: 

• Both national patches released on 10 December 2010 included the global patch released 
on 6 December 2010. 

• The national patch released on 12 December 2010 included the national patch for 
England/Northern Ireland (UK) released 12 December 2010 and the global patch released 
6 December 2010. 

• The global patch released on 20 December 2010 included all national and global patches 
below. 

It was possible that during a phase of PIAAC the cumulative patch file would get too big because 
there were too many files to replace (e.g., computer-based assessment projects for all countries). 
It wasn’t expected to happen and did not happen, but still there was a strategy to handle this case: 

If a patch needed to replace a large number of files or huge files, these files were provided in an 
external signed file. The user needed to download the patch file and the supplementary file. So 
this file was required only once. Subsequent patches did not include the supplementary file’s 
contents but would require it if the previous patch wasn’t already installed. 

The patch itself was extended into the Main Study. In simple words, it contained one patch as 
with the Field Test, which contained all other patches. The superior patch executed a bash script 
as usual. But this script coordinated the installation of the contained patches. It checked the patch 
level and decided which patches should be installed. For each contained patch, there would be the 
normal patch installation mechanism operating. Each contained patch had the same structure as a 
Field Test patch (execute.bash, description.txt and payload). A cumulative patch was a meta-
patch, which executed all other patches inside in a correct manner. In other words, a Main Study 
patch was a Field Test patch, and the payload was a bunch of patches. 



Survey of Adult Skills Technical Report 10 Chapter 8 

8.2 Development of the interfacing software for the integration in a 
national CMS (DIPF/ETS) 
The VMs running the PIAAC software were well insulated from the surrounding host system. In 
fact, this was the main requirement leading to choosing VMs as the building block of the PIAAC 
delivery. Nevertheless, restricted communication between host and guest (VM) had to be 
possible, for example, to (re-)start or stop the VM and exchange data such as results or patches. 
Normally, a so-called case management system (CMS) ran on the host system supporting the 
PIAAC interviewer by managing the sample and the interview status. The CMS could use the 
interfacing software as a kind of remote control for the assessment software in the VM. 

8.2.1 Interface software requirements  
Requirements resulting from the environment were as follows: 

• Because Windows (XP, Vista, 7) was used, the interfacing software was to be designed to 
run under these operating systems. 

• The participating countries did not use a common CMS, if any. This required that the 
software be accessible from any CMS software and not require a special runtime 
environment. 

• The PIAAC VM could be run by three different VMware products, so the interfacing 
software needed to support these products : 

- VMware Workstation (mainly used for testing and setup purposes) 

- VMware Server (used in the Field Test) 

- VMware Player (used in the Main Study) 

The functional requirements for the interfacing software were: 

• VM remote control 

- Starting the VM 

- Terminating the VM 

• Assessment control and data access  

- Start a case 

- Resume a case 

- Getting a case state 

- Retrieving the result data 

• Handle maintenance and administrational requests 



Survey of Adult Skills Technical Report 11 Chapter 8 

- Install patches 

- Archiving and recovery 

8.2.2 Implementation of the interfacing software 
The interfacing software was developed using “AutoIt,” which is a freely available programming 
environment for Windows. All releases of the software also include the complete source code. 
This enabled the countries to make changes to the source code if necessary without the need to 
buy expensive programming tools. 

The functionality mentioned above was developed as small programs – the so-called PIAAC 
scripts. These scripts could be run from the command line or could be called by a program (e.g., a 
CMS). 

The scripts interacted with the PIAAC VM via the VMware VIX interface software. The VIX 
software provided services such as controlling VMs, file handling and calling programs and 
scripts inside the VM. 

8.2.3 Setup 
To install the PIAAC scripts, the scripts were downloaded and copied to a particular location on 
an interviewer computer.  

To handle different user environments concerning the location of the files (scripts and virtual 
machine) and settings like VMware access information, there was a configuration file which 
could be modified by a configuration script. 

The required folder structure was: 

• C:\piaac    
holds the PIAAC scripts (this folder can be changed) 

• C:\piaac\input   
holds the prepared input files containing case data 

• C:\piaac\output   
holds the result files of finished or paused cases 

• C:\piaac\administration  
holds supplementary files like database dumps 

• C:\piaac\patches   
holds patches to be applied to the virtual machine 

8.2.4 VM remote control  
To control the VM remotely, two scripts were developed. Script StartVM, which was developed 
first for the Field Test, started the VM. This functionality moved to the script HandleCAPI, 
which was developed later for the Field Test. This script started the VM only if it wasn’t running 
yet and couldn’t start an interview. 



Survey of Adult Skills Technical Report 12 Chapter 8 

The script StopVM forced the Debian operating system to shut down and terminate the VMware 
software. 

8.2.5 Assessment control  
For the Field Test script, StartCAPI handled the start of a case and script ResumeCAPI handled 
resuming a paused case. Both functionalities in the Field Test later moved to script HandleCAPI, 
which was able to determine the state of a certain case and was dependent on the state to start or 
to resume a given case. 

Starting a case required an input file on the input folder. This file was copied inside the VM, and 
after that, a service script inside the VM was called that started the browser and displayed the 
interview at the state specified by the input file (new interview) or at the state it was paused 
(already started). 

A CMS then could look for the state of the running interview by frequently calling the script 
GetCaseState. Every call of GetCaseState produced a file containing some data about the state 
and the progress of the current interview. This file was located on the administration folder. If the 
state changed from “running” to “paused” or “finished,” a CMS could react accordingly: 

In case an interview finished, the file containing the collected interview data could be copied to 
the output folder by calling script ExportResult. 

A CMS then could start or resume a new interview or terminate the VM by calling script 
StopVM. 

8.2.6 Data access 
The script ExportResult was used to retrieve the collected data of a certain interview or all 
interviews. The file or the files was copied from the VM to the output folder. Inside the VM, the 
file was moved to an archive folder. This was to avoid having a result file copied more than once. 

Script ControlCAPI frequently called the script ExportResult, so every time a result file was 
written, it was copied automatically to the output folder. 

8.2.7 Maintenance and administration 
Dropping cases 
Deleted the interview specified by the PERSID from the TAO database. This operation was 
irreversible and needed to be used with care. There was no recovery for this action. 

Recover case data 
Recovered the result files of a certain case or of all cases from the database or from archive 
folders and copied the files to the Windows environment. The files were not copied by default 
(see below). Recovering from the archive folders was preferred to get complete result files. 

Dump 
To get a dump of the SQL database containing the case data of a certain case or of all cases, there 
were two scripts named DumpCase and DumpAllCases. The SQL dump files were copied to the 
administration folder. 



Survey of Adult Skills Technical Report 13 Chapter 8 

To import previously generated SQL dump files to the SQL database inside the VM, there were 
two scripts named ImportCase and RestoreAllCases. The DisableKeyF9 disabled the debug 
feature “Watch window.” After a VM was tested successfully, this script needed to be executed 
one time on a clean VM to turn off the debug feature. Note that the feature could not be enabled 
again. 

Patches 
If a bug in a VM was discovered up to now, the bug was fixed and a new VM was provided for 
download. Downloading a new VM meant it would take time until the new VM was available on 
the target system. Also, because VMs are so large, it could be problematic to deploy new VMs 
once interviewers had started work in the field. An easier and faster way to fix a bug in a VM 
which was already installed was to provide just the changes needed in the form of a patch. 

A patch is a small file that is provided for download and contains only the changes to fix certain 
bugs. Because only the changed files, not the entire VM, were included in the patch, transmittal 
and installation was fast. This saved time. Installing a patch was secure because the files were 
signed. A VM would not accept a patch file that wasn’t signed or was signed with an invalid key. 

There were two methods for installing patches, either via the command line or via a graphical 
user interface (GUI). For manual patch installation, the GUI version was easiest. For automated 
installation, for example, via a CMS, the command line version was best. 

8.2.8 Interface overview  
Scripts were to be called from the command line in a Windows environment. Some of the scripts 
required one or more parameters, for example, the PERSID, to specify a certain case. One thing 
to avoid was starting a script by double clicking on the name, for example, in the Windows 
Explorer. In that case it was not possible to enter parameter values. 

Every script displayed a small piece of information about its purpose and usage if the parameter 
value “help” was entered, such as “StartCAPI help.” To manipulate the behavior of a script, 
switches could be added at the end of the command line (last parameter value). In case of more 
than one switch, the first character was ‘-’ followed by the switches’ names (usually one 
character), such as “-dop”. 

All scripts supported the switch “-d”, which produced an editor window for debug output. This 
debug output could be saved to a file for bug report purposes, such as via the bug tracking 
mechanisms established. 

• PIAACscriptConfig 

Configuration tool 

• StartCAPI (optional: “new” “login” or PERSID) 

Basic scripts 

• ResumeCAPI (PERSID) 

• ExportResult (optional: PERSID) 



Survey of Adult Skills Technical Report 14 Chapter 8 

• ControlCAPI 

• StopVM 

• GetCaseState (optional: PERSID) 

• HandleCAPI (optional: “new” “login” or PERSID) 

• DropCase (PERSID) 

Administrative scripts 

• DumpCase (PERSID) 

• ImportCase (PERSID) 

• DumpAllCases 

• RestoreAllCases 

• RecoverCase (optional: PERSID) 

• DisableKeyF9 

• PatchVM 

• PatchVM_GUI 

8.2.9 Changes and enhancements from Field Test to Main Study  
During the Field Test it was important to apply the patches in the right order. For the Main Study, 
the method was changed to make the patch process safer. 

Patches were now cumulative, meaning each new release of a patch also contained the patches 
released before. Each patch now owned a so-called patch level. The patch level was a number 
that was increased incrementally for every new release of a patch. The patch level was part of the 
file name (see the last four characters).  

If a patch was applied to a VM, it compared the patch levels of that patch and the one within the 
VM. The patch would be applied only if the patch level was higher than that of the VM. 
Otherwise it was ignored. It was recommended to apply the patch having the highest patch level 
if there was more than one patch applicable. 

The script PatchVM_GUI released for the Main Study offered only patches having a higher patch 
level than the current VM.  



Survey of Adult Skills Technical Report  1  Chapter 9 
 

Chapter 9: The TAO Platform 

Raynald Jadoul, Patrick Plichart, Jérôme Bogaerts, Christophe Henry 
and Thibaud Latour, CRP Henri Tudor 

 

TAO is a platform developed as open-source software. It was initially designed for national 
education monitoring in Luxembourg, Germany and Hungary. It is also used for many other pilot 
studies worldwide. The major strengths of TAO reside in its flexibility and a design oriented 
toward a multilingual, highly distributed and cooperative operationalization of survey processes 
led in an international context. 

Since 2006, OECD has relied on TAO for a progressive computerization of its large-scale studies 
(e.g., the Programme for International Student Assessment, or PISA, 2009; PISA 2012, PISA 
2015, as well as PIAAC). 

As a technical solution, TAO provides a general and open Web-based architecture for the design, 
development and delivery of computer-assisted tests. It is released under the GPLv2 license and 
available on the TAO website (http://www.taotesting.com). Although TAO provides much of the 
functionality required for the operationalization of large-scale assessment processes (authoring 
tools, workflows for the management of the activities related to the creation of test takers, 
deliveries, etc.), it was essential to enrich the platform for PIAAC with various features described 
below. 

9.1 TAO architecture overview 
In terms of architecture, TAO is built on top of a knowledge base (i.e., a database capable of 
handling highly flexible data models) called Generis. The TAO platform is 100% Web-based. Its 
architecture entails independent components (called “extensions”) covering the operations 
involved in a typical CBA lifecycle (see Figure 9.1). 



Survey of Adult Skills Technical Report  2  Chapter 9 
 

Figure 9.1: TAO’s extensions-based architecture for CBA lifecycle 

 

9.1.1 Item (or question) management 
This part manages the creation and design of items. An item can be an exercise, that is, a 
competency assessment that takes the form of a question for which there is at least one right 
answer and a scoring algorithm related to the competency to be evaluated. Exercises are also used 
for formative purposes. An item can be an informational question, meaning a question that does 
not seek to evaluate a competency but to elicit background information that provides the context 
(social, economic, etc.) of the test taker. Different design templates are proposed depending on 
the type of item to create. 

9.1.2 Test (or questionnaire) management 
This part manages the creation of tests. Tests combine a selection of items into a defined set. Test 
parameters include item order, scoring, layout, and so on. In the terminology of TAO, a test that 
integrates solely competency assessment exercises is called a competency assessment (or a 
computer-based assessment; CBA), and a test that is composed uniquely of informational 
questions is called a background questionnaire (BQ). 

9.1.3 Test taker (or interviewee, or respondent) management 
In this part, one can register test takers for the platform, define their registration data (e.g., login, 
password, mother tongue, location, etc.), and associate them with the relevant group(s) to which 
they belong. 

9.1.4 Group of test takers (or interviewees) management 
This part manages the creation of groups for organizational purposes. For example, grouping test 
takers according to global features and classifications (like the citizenship to a country) is 
managed in this component. 



Survey of Adult Skills Technical Report  3  Chapter 9 
 

9.1.5 Delivery (test taking, examination, or interview) management 
This part manages test deliveries. The creation of deliveries is the process of assigning selected 
tests and selected groups of test takers to delivery campaigns. During the creation of a delivery, it 
is possible to exclude test taker(s) on an individual basis, notwithstanding their group 
membership. A delivery campaign features many parameters: sequence of the tests, maximum 
number of executions, delivery period, and so on. 

9.1.6 Results management 
This part manages the results of the “executions of the deliveries” (also called instances); these 
data include the information of all delivered tests, their related test taker-, group- and item-
specific data, as well as the individual data collected during the “test execution” (also called 
runtime). Individual data collected during runtime include behavioral information (e.g., reaction 
times, latencies, hesitation) and contextual information (e.g., hardware settings). In this 
extension, one can create tables to visualize the results and export them for further data analysis. 

9.1.7 Process management 
The focus of this extension is the creation and operation of the processes (operated through 
workflows) required to drive the various types of activities needed in the development of large-
scale surveys, hence to support all specialists involved in carrying out those activities. 

9.2 TAO architecture for PIAAC 
The context of PIAAC required building new extensions and support tools on top of the TAO 
platform. 

First, TAO integrated a new type of item to support the CAPI survey style. CAPI surveys do not 
deliver the question items directly to the respondent; instead, professional interviewers read the 
questions to interviewees; questions are backed by instructions and complementary information 
that guide the interviewers. From a technical point of view, this new form of question item was a 
major challenge; it had to transpose all the requirements and expected capabilities of standalone 
(i.e., not Web-based), highly responsive, fully-fledged commercial CAPI solutions to a free-of-
charge, full-edged Web-based CAPI platform; for example, professional interviewers make 
intensive use of keyboard shortcuts and need adapted user interfaces. Also, the transition delay 
when leaving one question for the next should not exceed one second. 

TAO was also enhanced to support highly complex flows of items where questionnaires make an 
extensive use of a) dynamic sequencing of questions (i.e., different answers lead to different 
follow-up questions), b) dynamic layout of questions (e.g., German words tend to be longer; 
white spaces are seldom in Japanese; Asian characters need to be magnified by 10% to be 
readable; Hebrew and Arabic are read from right to left), and c) dynamic wording of questions 
(e.g., some language grammars require the wording of a question to take account of the 
respondent’s gender, age, and so on). The TAO toolbox integrated tools and processes allowing 
those dynamic aspects of the questionnaires to be tailored at the national level for each country 
participating in PIAAC. 

Finally the number of partners involved in operationalizing the questionnaires and the diversity 
of the tasks to be achieved, often sequentially, sometimes concurrently, meant the need for well-
defined organizational processes. These processes entailed the operations to create items, adapt 



Survey of Adult Skills Technical Report  4  Chapter 9 
 

them to reflect national specifics, check their quality, push them to the final support (in PIAAC’s 
case, a virtual machine), and so on. Therefore, the “process management extension,” based on an 
ontology-driven “workflow engine” (the first of its kind), had to be enhanced to handle a large 
quantity of active parallel processes. 

In terms of software architecture, the workflow engine was not only responsible to support 
operationalizing questionnaires. The same workflow engine led the sequence of the noncognitive 
question items during the interviews. Initially defined by the specification document describing 
the PIAAC general workflow of the BQ, the sequence was adapted on a national basis. 

The TAO architecture entails these key features, described in the sections below: 

• Tackling technology-based assessment challenges with the semantic Web 

• A workflow engine for cross-cultural large-scale assessment 

• Test and item delivery architecture 

9.2.1 Tackling CBA challenges with the semantic Web 
Considering the range of variability of CBAs, a versatile architecture that makes use of specific 
innovative technologies was designed to tackle the needs of the different stakeholders. 

Several types of variability need to be addressed, not only in the context of assessment, but also 
to support the integration of CBA in e-learning environments (see Figure 9.2): 

Figure 9.2: CBA challenges in terms of variability 

 



Survey of Adult Skills Technical Report  5  Chapter 9 
 

Context variability: In the educational context, for instance, many different data models are 
created and managed such as the specification of the classrooms where the students sit, their 
teachers, their learning options, and so on. In addition, modern learning environments provide 
personalized learning situations that enforce the need to design assessment items accordingly. 
The annotation of the item could be used to personalize the assessment instrument, such as item 
selection or item layout adaptations that reflect, for example, disabilities or learning styles. These 
annotations could also be used to select more appropriate learning activities based on a student’s 
performance on the different items. This model variability also applies to other resources in a 
CBA system such as subjects, tests, or management of the test results. From an IT perspective, 
this model variability is challenging because it prevents the definition of the data models a priori 
and the design of a classical database structure. To tackle this variability, we used the semantic 
Web-related technologies RDF and RDFS (which stand for Resource Description Framework 
Schema.) Both are standardized languages that enable us to express information about resources 
at any level of abstraction. They allow the system users to define the data model (i.e., to define 
classes of resources and describe their properties) as well as the data itself (e.g., to define values 
of properties that describe a particular student). All these data models are defined by using 
RDF/RDFS. They are created and adapted easily by the users of the system through intuitive user 
interfaces – no further implementation efforts are needed when the data model requires changes. 

Using RDF repositories instead of a classical database design solves the model variability issue. 
The TAO platform makes use of the generis4 RDF/RDFS repository. This implies that, from the 
point of view of the application layer, the source code needs to be independent of the model, and 
all the user interfaces for resource management need to be generated by first inspecting the model 
that was defined by the user. 

Interoperability: CBA systems need to be integrated into existing business processes and legacy 
software. This may also require replacing some existing feature subsets or extending the system 
with new features, which involves defining Application Programming Interfaces (APIs) within 
the architecture that provide customized plug-ins to handle all the CBA resources (e.g., for 
computing statistics, creating proficiency reports, using existing subject databases, etc.). TAO 
provides two APIs, one for direct calls with the PHP programming language and one for remote 
access using SOAP Web services. 

Distribution: CBA involves pedagogues, psychometricians, statisticians, item encoders and item 
translators, and may also involve stakeholders located in different geographic areas, such as a 
ministry of education guaranteeing access to subjects, a pedagogic institute defining tests, private 
software companies creating rich media for items, and so on. All the different stakeholders 
manage different kinds of resources. This requires all the CBA resources to be distributed on the 
CBA platform across a network of different collaborating institutions. Subject management, for 
example, is probably allocated to a specific accredited institution. Item management may be 
located at a different site to prevent items from being stolen. Such a distribution of tasks calls for 
the architecture of a CBA platform to be modular and distributable using the existing 
communication channels. This can be tackled through the use of Web services. Such distribution 
also allows sharing of resources and can be combined with a peer-to-peer network protocol, 
which would enable, for example, test creators to search across the entire network for items based 
on item model properties. 

Organizational variability: The involvement of different stakeholders may require workflow-
based work in order to make sure that the right person accesses the right feature of the CBA 



Survey of Adult Skills Technical Report  6  Chapter 9 
 

platform at the right moment. This also addresses the need for a quality layer to optimize the 
processes that lead to the creation of a measurement instrument. From an IT perspective, this 
involves the use of a workflow engine tool and a process design tool so that the person 
responsible for the assessment can design the CBA process according to his or her needs. This 
also requires that features from the CBA platform be split into autonomous services that can be 
triggered independently. 

Item versatility: Authoring of items should not be restricted by the specificities of the CBA 
platform. It should allow simple item creation, like multiple-choice questions, but also more 
complex items, such as simulations. Maximum freedom should be given to the item developers at 
the level of the item layout and structure, as well as at the level of item behavior (interactivity). 
This can be achieved by a) defining a high-level language that supports layout, structure and 
behavior description, and b) implementing an authoring tool that facilitates the design of items as 
well as an interpreter capable of rendering such items. 

9.2.2 A workflow engine for cross-cultural large-scale assessment 

9.2.2.1 Introduction 
With the advent of large-scale, cross-cultural surveys (e.g., IALS), Trends in International 
Mathematics and Science Study (TIMSS), Progress in International Reading Literacy Study 
(PIRLS), PISA and PIAAC), CBA becomes more strategic than ever before. While survey 
designers are used to facing adaptation and translation issues with paper and pencil, introducing 
the computer for such activities brings up new challenges. 

Ideally, the very same version of a computer-based educational survey would be carried out in 
many different countries by simply translating its components. Unfortunately it might not be that 
simple. At an international level, cultural distinctness among areas most often lead to heavy 
modifications on how data collection in educational assessment will take place. From deleting 
questions to inserting brand new sequences of items midway through the assessment of some 
respondents, altering the original design of the material might be a frequent need. Depending on 
local constraints, participating countries will sometime have to modify how questions are asked 
and sequenced. Software instruments must also deal with a wide range of alphabets and symbols 
and need to be highly polymorphic to satisfy all stakeholders collaborating on cross-cultural 
large-scale surveys. 

Deriving as many instruments as necessary to cover all countries’ specific needs (lingual, 
cultural, socioeconomic, etc.) can be painful and error-prone work if not managed properly. To 
transpose a paper-based instrument into a computer-based one is also expensive in the context of 
a large-scale survey. To minimize the investments in time and money, a good approach would be 
“describe once, adapt as needed, and run many.” To reach this goal, we have adopted a solution 
based on workflows, easing the production of extendable and executable assessment processes. 
By both adapting and running BQ and CBA built on the same computerized descriptions, we 
have facilitated the design and implementation of cross-cultural computer-based educational 
assessment. 

In the next sections, we describe how concepts and techniques from the world of workflow 
modeling and execution were applied to PIAAC. We introduce the formal representation of the 
assessment process based on the XML language. Then, we show how this format is used to 



Survey of Adult Skills Technical Report  7  Chapter 9 
 

support cultural adaptations. Finally we describe the execution of an assessment process in a 
computer-based context. 

9.2.2.2 Describing the assessment process 
Large-scale international computer-based surveys involve multidisciplinary teams from various 
countries across the world. This may lead to cultural and linguistic issues at the very beginning of 
the survey design; this adds up to the drawbacks that international projects usually encounter 
(e.g., agreeing on time-zone windows for meetings). The need for a formal representation about 
how data will be collected from an assessed population appears at an early stage of the 
engineering. A semantically sound pivot format giving stakeholders an opportunity to interact 
with a way marked assessment process description is essential. 

According to Deelman, Gannon, Shields, and Taylor (2009), a workflow refers to defining the 
sequence of tasks needed to manage a business or computational science or engineering process. 
This also applies to BQ and CBA worlds by treating questionnaires and assessment sessions as 
sequences of tasks to be achieved by respondents. In this context, we say assessment process is 
the sequence of tasks required to assess and collect data for a single respondent. This statement is 
the basis for a simple but semantically rich format used to describe complex sequences of the 
tasks composing an assessment process and the rules that steer its flow. 

A. Main concepts 
Our XML description language integrates elements that authors can combine to describe 
processes including activities, transitions, consistency checks, variables and derivation rules. The 
following list explains the semantics of these concepts in detail and how they can be applied to 
the assessment world. 

Process 
It encapsulates the whole sequence of events occurring during the assessment process. It 
contains a set of activities logically linked by routing rules. It also holds the context of its 
process variables. The combination of the variable values and the current activity of a 
process instance constitute its state. In BQ and CBA contexts, a process represents an 
assessment session focusing on a single respondent. 

Variables 
They are comparable to simple data holders within a process. Our implementation gives 
every variable a global scope (i.e., variables are available within the entire process). Data 
collected during assessment will be stored in process variables. 

Activity 
It represents a task to be achieved during an assessment session. Activities are started 
according the flow logic of the process. They are divided into two categories: Automated 
activities, inherent to the process logic; do not need human interaction (Silver, 2005); they 
contain derivation rules or consistency checks. Interactive activities require human 
interaction and are focused on the respondent. For instance, such an activity could be an 
electronic reading item or a multiple-choice questionnaire. 

Transition 



Survey of Adult Skills Technical Report  8  Chapter 9 
 

It links activities using simple or complex logical rules. They might be used to direct the 
respondent to more or less difficult items during a single assessment process according to 
previously collected data, stored in variables. 

Consistency check 
It verifies the consistency of previously collected data. A violated consistency stops the 
assessment flow. Performing such checks at runtime is particularly useful for large 
assessment processes, including for the profiling of the respondent. 

Derivation rules 
Using derivation rules, authors can force the creation of variables at runtime or the 
assignation of a new value. Therefore new data can be generated based on values 
previously collected at assessment time. These derived variables will be used for 
subsequent derivations and flow control. 

B. XML Description Language 
Our XML syntax is used to depict assessment sessions. It is inspired by standards like BPML 
(Arkin, 2002) and XPDL (2002) that are currently developed and used by the industry sector. 

Figure 9.3: A simple assessment process representation 

 
Specially, the XML Process Definition Language (XPDL) specification offers a simple and 
minimal set of constructs present in most workflow products (van der Aalst, 2003). We used the 
following XPDL elements in addition to new ones to describe assessment processes (see Figure 
9.3): 

Workflow process 
It contains the definition of activities, transitions and assignments. 

Activity 



Survey of Adult Skills Technical Report  9  Chapter 9 
 

It represents interactive steps and refers to the relevant software piece on which the 
respondent will interact. 

Transition 
It binds activities, transitions, assignments and consistency checks together using 
conditional expressions involving previously collected variable values. 

Assignment 
It contains logic setting a value to a particular variable by involving previously collected 
data. This is comparable to derivation rules but using XPDL semantics. 

Consistency check 
It verifies the consistency of the data contained in multiple variables. 

Variable 
It contains data collected during the assessment process. Transitions, assignments and 
consistency checks rely on their value to build up their logic. 

9.2.2.3 Authoring and cultural adaptation support 
To meet cultural requirements, stakeholders in large-scale and cross-cultural surveys need the 
right tools for cultural adaptations. They would like to add new cognitive items to the core survey 
in a particular sequence or suppress optional parts. Other partners may also need to add profiling 
questions related to the historical background of their country. All these adaptation needs are very 
difficult to foresee at the early stages of the assessment design. In this context, we developed 
appropriate tools to author, adapt and review XML-based assessment process descriptions. 

A, Authoring companion tools 
For the design and adaptation of assessment processes, we provided an authoring tool that did not 
require mastering the underlying XML format. Accessible via a Web-based user interface, it 
guides the author through the authoring process. Authors can comment on every modification 
they performed on the process description. This acts as a track-changes system, improving the 
communication between stakeholders. The authoring tool also prevented logical errors from 
occurring. For instance, a reference to an unknown variable in a flow transition was 
systematically detected and made visible. 

Because activities, transitions and variable assignments may be numerous in a large assessment 
process, it was difficult to display all at once. To compensate for this shortcoming, the tool 
generates a graphical representation of the process based on the GraphML language (2010). This 
offered an easy way for authors to visualize the relationships between very distant elements of the 
process and to understand immediately its global design. This XML-based graphical 
representation is seamlessly produced using the XSLT technology (Clarck, 1999) aiming at 
transforming XML files using style sheets. 

B. Continuous control 
Creating numerous adapted versions of a reference assessment process (called master) must be 
carefully controlled. Critical aspects such as the comparability of collected data have to be taken 
into account. Thus, frequent reports were produced to set up a step-by-step reviewing process. 
These reports helped reviewers to validate or not the changes made by adapters. To support this, 
a reporting tool able to detect differences between multiple versions of an assessment process 
description was created. To produce its reports, the reporting tool uses flat and hierarchical 



Survey of Adult Skills Technical Report  10  Chapter 9 
 

Diffing techniques (Miller & Myers, 1985; Chawathe, Rajaraman, Garcia-Molina, & Widom, 
1996) in addition to the Levenshtein (1965) algorithm. As a result, additions, suppressions and 
modifications performed on an assessment process description are consistently underlined. 
Finally, the difference reports are delivered to reviewers in an XHTML format (Pemberton et al., 
2000), usable on the computer but also easily printable. 

9.2.2.4 Assessment process execution 
On top of our workflow description format, we built up a specific mono-user workflow engine 
(WE). It acts as a software service providing the runtime execution environment for a process 
instance (Ferreira & Ferreira, 2004, pp. 309-324) focusing on the assessment of a single 
respondent at a time. Formerly described by authors, the assessment process is executed exactly 
as is. This helps to reduce the gap that may appear in computer-based projects between project 
designers and computer scientists. 

A. The workflow engine 
Our workflow engine is developed upon the PHP programming language (2010a). It was 
designed to be reusable as a Web or desktop (e.g., in a software built upon PHP-GTK) (2010b) 
application component as well. As a consequence, it can be embedded on both server and client 
sides. XML descriptions of the assessment process are processed and stored in the system, ready 
to be instantiated and run. As a test bed, we integrated our component into TAO: an open and 
versatile CBA platform (Latour & Martin, 2007, pp. 32-33). This enables users of this PHP 
platform to author workflows to drive simple to complex assessment processes with pre-existing 
TAO items as its interactive steps. As with any WE, it is in charge of instantiating assessment 
processes on demand. Each process represents the test session of a single respondent. These 
instances can, of course, be started, paused, resumed and destroyed at will. Each process has its 
own state, composed by its process variables values and its current activity. The engine takes care 
of sequencing activities in the correct order according to the process state and the routing rules it 
comes across (see Figure 9.4). 

Figure 9.4: The workflow engine in the TAO platform 

 
Activities depicting the tasks that have to be achieved at runtime are executed differently 
following their nature. A dedicated “rule engine” embedded in the software executes the logic 
bound to automated steps and evaluate routings. On the other hand, the execution of interactive 



Survey of Adult Skills Technical Report  11  Chapter 9 
 

steps is delegated to the appropriate software component. Currently, the engine only supports 
Web applications for “interactive steps” implementations. They will thus be provided to the 
respondent through a Web browser during the assessment process. 

At runtime, rules attached in automated steps have an inherent access to process instance 
variables because of their technical proximity with the WE. By contrast, interactive steps are 
software parts developed apart from the engine. They need easy access to process contexts in 
order to influence the process flow if needed. To make this possible, the WE exposes an 
appropriate API. Through the latter, interactive steps implementations are able to consult and act 
on the process state by retrieving and modifying the value of its variables. 

B. Assessment delivery 
The assessment is delivered to the respondent through a Web browser. The graphical user 
interface (GUI) displayed to the respondent during an assessment session is the process browser 
(PB). It is in charge of proposing the correct interactive steps (e.g., cognitive items, 
questionnaires) to the respondent. The PB enables the user to interact with interactive steps 
implementations but also provide GUI components to navigate through the process. This allows 
the respondent to go back and forth between interactive steps and adjust previous answers if 
necessary. Each time the respondent decides to go forward through the assessment using the GUI, 
the WE gets the control back and selects the next interactive steps to be displayed. 

9.2.2.5 Conclusion 
We have reviewed the methods and techniques coming from the domain of computer-based 
workflows and how they were successfully applied to the PIAAC survey. The XML format and 
its semantics for describing assessment processes were satisfactory. Tools provided for the 
authoring and the cross-cultural adaptations of PIAAC processes were adequate. Finally, the 
workflow engine provided the expected support in that context. 

9.2.3 Test and item delivery architecture 
It is mandatory for tests and related items to be delivered the same way on any Web browser in 
order to prevent biases and discrimination. It is also important to be able to track the respondent’s 
behaviors (for CBA) or hesitations and latencies (for BQ) as those data may cast some light on 
subsequent results’ analysis. Moreover, to give a maximum of freedom to the authors for the 
design of rich items including media content is very desirable. Those constraints have led to the 
choice of the Adobe Flash technology to create and deliver the test to the end user. The test and 
the item runtime engine read XML descriptions of the items that are authored beforehand with 
authoring tools. The XML-based items are based on the Business, Layout, Actions, Content, 
Knowledge Model (BLACK), which was developed at CRP Henri Tudor. The BLACK model is 
a high-level pivot format used to address the need for freedom required at the level of item 
creation. Thanks to the authoring tool, the user can edit items graphically and does not have to 
handle the item description file directly. 

BLACK is composed of different sections. The business section of an item description gives 
overall information about the item. It describes those parts of the item that constitute the stimulus 
(set of materials given to the subject, the part of the item that constitutes the task itself, the 
response categories). In addition, it also defines the right expected answer and the evaluation 
algorithm to be used. The layout section describes all graphical elements to be used in the item 
such as radio buttons, check boxes, images, and so on by using the XUL markup language 



Survey of Adult Skills Technical Report  12  Chapter 9 
 

(2010). The action section is used for items representing simulations, where certain elements of 
the item are expected to have a certain type of behavior. For instance, a pressed button might 
cause a Montgolfier picture to move up and down. The content section is language dependent and 
contains all text messages available in the item or all links to media, such as pictures or movies. 
Finally, the knowledge section contains metadata annotations of the item using XML RDF and 
describing potential skills, context of use, overall difficulty of the item, and so on. 

9.2.4 Use of the TAO platform for PIAAC 

9.2.4.1 BLACK model to support rich CBA items (component Problem Solving) 

Motivations in using the BLACK format 
The BLACK format addresses particular requirements of the PIAAC CBA platform to build and 
to run cognitive items, especially in the field of “Problem Solving”: 

• Dynamically interoperate heterogeneous contents: e.g., for complex objects assembly; 

• Facilitate contents extraction and maintainability: e.g., for localization (XLIFF); 

• XML driven – based on namespaces to favor natural plugin construct and interaction; 

• Encapsulation to assure packaging, transportability and deployment of the resources; 

• Hierarchical nesting of contents from various data sources to favor interchangeability; 

• Events-driven to assure the interoperability between the components; 

• Homogeneous deployment on server side as well as on the client side. 

BLACK — a MVC architecture 
BLACK is an extension of the MVC pattern; it respects and elaborates on the MVC architecture 
principles. From a general point of view, the layers Business, Layout, Action, Content, and 
Knowledge can be successfully mapped to the Model, View, and Controller layers, as defined in 
Table 9.1. 



Survey of Adult Skills Technical Report  13  Chapter 9 
 

Table 9.1: The mapping between BLACK and MVC 

Model View Controller 

Business   
 Layout  
  Action 
Content   
Knowledge   

BLACK data structure 
Streams of data structured according the BLACK format are named BLACK formatted streams 
or simply BLACK streams. The content of a BLACK data structure is a Manifest which 
references zero, one or many layers of the BLACK model: Business, Layout, Action, Content, 
and Knowledge. 

<?xml version=“1.0” encoding=“UTF-8”?> 
<black:manifest xmlns:black=“http://www.exulis.lu/black.rdfs#” id=“an_example”> 
 <black:business> 
 ...  
 </black:business> 
 <black:layout> 
 ...  
 </black:layout> 
 <black:action> 
 ...  
 </black:action> 
 <black:content> 
 ...  
 </black:content> 
 <black:knowledge> 
 ...  
 </black:knowledge> 
 </black:manifest> 

This structure constitutes a normal basic BLACK stream; the root tag (i.e., “manifest”) must 
expose at least two attributes: a reference to the BLACK namespace and the “id” of the manifest. 
In the following section, we briefly present the definition of a manifest’s prime layers and show 
how this supports our goals and assertions regarding the authoring and rendering of Problem 
Solving items described as BLACK bundles (i.e. one or more linked BLACK manifests and the 
relate resources (e.g. pictures). 

The Business layer introduces the “semanticity” of all elements referenced by a manifest. 
Therefore, it operates as the driver of the integration and the interoperability of all the different 
kinds of contents involved in a bundle. It references the namespaces of the tags present in the 
BLACK stream and refers the components (e.g. parsers, services, etc.) to be loaded and invoked 
dynamically when certain namespaces need a specific handling (e.g. for the rendering of a 



Survey of Adult Skills Technical Report  14  Chapter 9 
 

graphical element.) The layer also defines the bindings existing between elements of Layout layer 
and data providers defined in the Action layer (e.g. services, functions) or existing as data 
container in the Content layer. This Business layer will also hold all the preferences and settings 
subject to adaptation by the user and/or the system. It also contains directives for the correct 
handling of the BLACK stream itself; the directives indicates, amongst others, where the 
BLACK stream should be handled: on the server side or on the client side. When a BLACK 
stream is processed on the server side, a specific parser, named BLACKparser, analyzes the 
stream and prepares a deployment infrastructure without any reference to the BLACK format so 
the final product results in a standard web application where the use of BLACK becomes 
completely transparent to the server and the client. The BLACKparser is thus in charge to go 
from a meaningful compact BLACK manifest to a multi-tier application, and therefore, adding all 
the necessary in-between components enabling the expected execution of the whole application 
for the final user. A BLACK stream can also be carried along to the client side. In that case, the 
BLACK stream is handled by a BLACKrunner module. The BLACKrunner is available as two 
different flavors: one is based on the Adobe Flash technology and the other is built on a 
JavaScript technology. The Flash version of the BLACKrunner embarks the eXULiS library 
which natively handles the XUL and the SVG formats (even on browsers not compliant with 
these standards) and offers an extension mechanisms (to render other formats) and a toolbox 
facilitating rapid duplex communication, local storage, data processing, and enforcing resilience 
and security. The JavaScript version of the BLACKrunner is more dependent on the web browser 
capabilities (e.g. the availability of the canvas object) but it clearly offers a broader compliance to 
the W3C standards on which it tries to capitalize a maximum (e.g. XHTML, CSS3, HTML5, and 
so on.) 

The Layout layer is dedicated to the declaration of all the visual components displayed to the user 
(i.e. the side which was referenced as a part of the “Editor” in the first edition of the MVC 
(Reenskaug, December 1979) and was re-centered on the term of “View” in the second version of 
the MVC (Reenskaug, May 1979). These elements are usually related to a part or a complete 
framework offering graphical rendering capabilities; frameworks commonly available are XUL, 
SVG, XAML, XHTML+CSS, MXML, etc. Some of these frameworks are dedicated to specific 
domains as MathML, ChemML, and ChartML, in which they may need the support of an extra 
plugin in order to insure the right display of the elements. The rendering of very advanced 
standards as the X3D and VRML also require the availability of specialized renderers installed on 
the client computers. When a BLACK stream is used as a support for a mashup aggregating 
various sources of contents, the Layout layer may summarize itself to a set of XHTML iframes 
(each pointing to its own contents) placed accordingly to a CSS. For this case, the added value of 
the BLACK is to enrich the default behaviors of each iframe by the injection of an observer 
pattern making the content of each iframe potentially reactive to the interactions occurring in 
other iframes (i.e. on other source of data.) An illustrating use case could be this one: let’s 
suppose English is not your mother tongue. You connect to a portal offering a mashup specially 
designed to facilitate the reading of scientific texts available in English. After a light setup where 
you define your linguistic preferences, the reading facility would display two iframes; one is 
displaying a Scientific American article, and a second targeting Google translate online 
application. Each time you would underline one word of the article, an event would be dispatched 
from this first frame; the event would be broadcasted by the BLACKrunner; an event listener 
attached to the second iframe would react and, as a result, the application Google translate would 
automatically display the translation of the highlighted word in your preferred language. 



Survey of Adult Skills Technical Report  15  Chapter 9 
 

The Action layer is the container of all the logic processing. As the BLACK elements must be as 
loosely coupled as possible, all the interactions between the elements are assured by a proper 
events manager which is built on event dispatchers, event listeners, and if necessary event 
broadcasters. The logic (e.g. function, service, object method) registered to handle the catch of an 
event by a listener is naturally located in the Action layer. Also, all forms of processing, 
controllers, data access, etc. are nested in this layer. The BLACK format defines a limited set of 
elements which stands as a meta-language used to specify context of execution (i.e. server side or 
client side), loops, alternatives and control structures (e.g. “if/then/else”, “switch/case/default”), 
standard service calls, and so on. However, application logic needs more powerful capabilities. 
Therefore, it is possible to embark logic expressed in any language in a CDATA structure as long 
as it does not break the XML validity of the BLACK stream. Thus, because of its capacity to 
provide data via functional and service calls, the Action layer does not restrict to a pure 
Controller tier of the MVC architecture, but could also be considered as a part of the Model. 
Nevertheless, in our view, we prefer to assimilate all forms of processing, data manipulation, and 
service invocation present in the Action layer to the Controller part of the MVC architecture. 

The Content layer is another part of the Model tier of the MVC architecture. Within the BLACK 
format it acts as a pure data container or as set of references to externalized data which 
themselves can be other BLACK streams. This may lead to extremely complex bundles made of 
imbricated BLACK manifests. In use cases where contents must be adapted depending on 
cultural constraints, it became totally obvious that all the data prone to localization and 
translation had to be located in this layer to facilitate their extraction by specialized processes (as 
met, for example, in international large-scale surveys) and their subsequent re-injection. 

The Knowledge layer is a container for all the metadata describing the BLACK stream as a whole 
or parts of this stream (e.g. a description of a picture referenced in the Content layer, displayed in 
the Layout layer and voiced by a call – declared in the Action layer, to an external text-to-speech 
plugin announced, via the Business layer, as a capability to be initialized for the current BLACK 
stream.) This layer also specify the format of the data to be produced as an output (if any) of the 
system described by the BLACK stream, for example, events to be collected. 

9.2.4.2 eXULiS – a Rich Internet Application (RIA) framework used eTesting 
Rich Internet Applications (RIAs) seem to be the solution offered by computer-scientists to the 
more and more demanding users. Unlike previous generations of Web applications, RIAs plan 
the leverage of the user experience with more powerful graphical user interfaces (GUI) including 
charts, drag and drop. RIAs also aim to remain as platform-independent and setup-free as 
possible. One should be able to work on data and tools both available online and these tools must 
be usable without setup or configuration on the client computer. However, RIAs also should be 
more than a few good-looking GUI because the desktop applications have made the users 
accustomed to a high level of responsiveness and customizability. 

RIA solutions are now legion. These are proposed to the developers as frameworks. Nearly none 
of these frameworks is really standardized even if the majority relies on the XML as a base for at 
least the GUI mark-up. The well-known application/UI formats are Mozilla’s XUL, Microsoft’s 
XAML, Adobe’s MXML, Laszlo Systems’ LZX, ActionStep’s ASML, ASWing’s AWML (used 
for PISA 2009) and enFlash’s ML. 



Survey of Adult Skills Technical Report  16  Chapter 9 
 

For the Problem Solving component of PIAAC, we used a new framework named eXULiS. It 
was not a standard or the ultimate RIA solution but rather another alternative that had been 
matured since 2006 and that tried to stay as close as possible to the standards of the moment. This 
section gives an overview of eXULiS and shows its place in the PIAAC assessment. 

The overall architecture of the TAO platform 
The Research Centre Henri Tudor started to develop a CBA platform called TAO (in French 
“Testing Assisté par Ordinateur”) since 2002. Until 2011, the platform relied on two main 
components. The first part, responsible for structuring, storing, and sharing of the data, is located 
on the server side. It is called Generis.4 The second part, active on the client side, was in charge 
of providing the correct display and completion of the tests and the questions (or items). It relied 
on the Flash player plugin that is installed on a large computer base (amongst individual 
computers). Since late 2011, more standard HTML5+JavaScript+CSS technologies replaced this 
latest component. 

This section describes client-side technologies as used for PIAAC, prior to December 2011. 

The work of the client-side component is to receive and to interpret the files describing the tests. 
The syntax of a test description is a mix of XUL and QML. XUL (or “XML User Interface 
Language”) gives the layout of the graphical objects to appear on the screen of the computer for 
the test. We choose XUL for its maturity and because it was more open and community oriented 
than some other initiatives. QML stands for “Questions Markup Language.” The QML used in 
the TAO platform was extended to encompass the needs of the IRT model as well as the new 
requirements towards the multilingual assessment. 

The heart of the rendering engine was a parser called XUL2SWF (where SWF is the file 
extension of the Flash movies). The framework eXULiS is more than a simple evolution of the 
XUL2SWF engine. It contains a XUL parser completely rewritten to be extensible and more 
compliant with the Mozilla specifications. It also includes a second parser that is able to display 
SVG drawings. SVG is the acronym for “Scalable Vector Graphics.” This XML language is used 
for describing two-dimensional vector graphics. The integration of a drawing format was required 
to open new vistas for the design of RIAs and for the authoring of advanced types of tests and 
items in the PIAAC context. 

The authors who create new graphical layouts for RIA and/or for CBA can proceed using the 
tools freely available on the Web; XUL files can be written with xuledit.xul and SVG files can 
easily be produced with InkScape, for example. For PIAAC, we also developed a tool to adapt 
the XUL and SVG layout files. This tool was named Copernicus. 

Figure 9.5 “TAO platform architecture” depicts the interactions of the two components described 
here above in order to deliver the RIAs, and more specifically, the tests to the test-takers. This 
schema shows the topography (or deployment architecture) and some sequences of actions 
between the modules involved in the TAO platform. This schema should be read from left to 
right as everything in our platform starts from Generis (Plichart, Jadoul, Latour, & Vandenabeele, 
2004). 

On the server side, Generis provides, via its PHP API or via its Web Services API, two sets of 
information issued from the RDF triples it manages. The first of these sets of data can be used by 
3rd party applications (Authoring tools, eLearning platform, eBusiness applications, and so on) to 



Survey of Adult Skills Technical Report  17  Chapter 9 
 

produce the RIA description files (XUL, SVG, Cascading Style Sheets and JavaScript) that can 
be either natively rendered by the browsers embarking the Gecko Runtime Engine technology or 
that can be displayed in all the families of browsers via the eXULiS plugin. The second set of 
data contains the same kind of files as the ones involved in the first set but it also includes files 
delivered in a format that is not directly interpreted by the Internet browsers (even the Gecko 
family). This part of the second data set is solely dedicated to the eTesting. It holds some 
definitions that only have a meaning in the context of a CBA. 

The files formats specifically used by eXULiS for CBA are: the TAO QML definitions, the 
XPDL (XML Process Definition Language) and some specific XML and RDF datasets. Please 
note that, in the case of PIAAC, RDF information as well as XUL and SVG description are 
conveyed by the BLACK files described earlier in this document. 

TAO QML files contain the logic and the hierarchical structure of the assessments. It means that 
the files describe a specific assessment in terms of a campaign involving one or several sequences 
of tests (potentially in different languages) including one or more sequences of Items made of a 
set of particular Items, each one integrating a Problem (stimulus), and Inquiries composed of a 
Question and a Distracter (e.g. a set of Proposals for multiple choices question, an open text, a 
puzzle, and so on). TAO QML is described later in this document 

In the case of predefined sequences (called scenarii) of Tests, Items or Inquiries, eXULiS 
evaluates, at a moment T, the execution context of the assessment; then it uses some Workflow 
(WF) definition files formatted in XPDL that contains the conditions of the time T, to display the 
correct user interface at time T+1. As mentioned above, the definition of the GUI is not stored in 
XPDL but in XUL and SVG files. 



Survey of Adult Skills Technical Report  18  Chapter 9 
 

Figure 9.5: TAO platform architecture 

 
Another interesting aspect of eXULiS is its capacity to extend its dynamic behavior in numerous 
manners. The engine is a Flash movie (.swf file) and it can act as a relay to local or remote 
function calls. It embarks a set of wrappers and API that enables the invocation of Web Services, 
server-side JavaScript, local JavaScript (located in the Web page – HTML, PHP, JSP – that nests 
the eXULiS Flash object), remote CGI scripts, and it even allows the communication with client-
side desktop applications through the use of local connections. 

When it detects a specific need (for example, a Test event is raised requesting that the current 
Item is displayed in Japanese), eXULiS may forward this event to the Generis back office that 
will provide (if necessary via a Just In Time compilation) the useful resources (in this case a .swf 
module containing some Hiragana, Katakana and Kanji character sets). The .swf modules may 
contain diverse types of resources including fonts, tools (e.g. calculator, notepad), compressed 
XML datasets, media, and so on. 

In the next sections, we will briefly discuss the eXULiS and explain how its modular internal 
architecture is a favorable ground to extend its capabilities. 

Design of the eXULiS framework 

The effort to build the eXULiS framework started before the diverse initiatives led by the 
standardization agencies (e.g., W3C). Instead of creating a homemade GUI format for the 
specific needs of the CBA, we decided to select one that was already available. We wanted an 

A two-fold construction 



Survey of Adult Skills Technical Report  19  Chapter 9 
 

open standard, well established with enough resources available online, and if possible, a solid 
community; the Mozilla project called XUL, although not a standard, got selected. 

For our needs, we implemented this format in a component named XUL2SWF. Initially, this was 
a monolithic class encapsulating a parser that was recursively parsing XUL tags to render the 
corresponding graphical user interface via the Adobe (formerly Macromedia) graphical widgets 
(e.g. basic “movie clips” and “v.2 components”). In 2007, about 60% of the XUL widgets were 
available in XUL2SWF, already enough to fulfill most of the needs of PIAAC. 

In 2008, the one-piece class became the eXULiS framework and the coverage of the XUL 
specification increases as well as the new engine embarks other XUL affiliated technologies like 
XBL (eXtensible Bindings Language) and RDF (Resource Description Framework). 

Furthermore, to address the new requirements elicited during the PIAAC survey preliminary 
analysis, we added to the XUL framework, a second framework to handle the SVG standard. 

In the Figure 9.6 “eXULiS framework overview,” the two parts of the class tree can be clearly 
identified: on the left side, XUL classes are inheriting from a common XULelement, and on the 
right side, SVG classes are inheriting from a common SVGelement; both XULelement and 
SVGelement are inheriting from element. The ancestor class element acts like a relay allowing a 
natural communication between the two frameworks, in particular via events. For example, 
widgets in the SVG framework can subscribe to any events of the type xyz and start to listen 
while a widget in the XUL framework can dispatch this type of events. The xyz event bubbles up 
to the root of the frameworks and it gets broadcasted to subscribing SVG widgets. 

 
Figure 9.6: eXULiS framework overview  

 
The whole framework can also use other static classes available in the Flash framework; an 
example is the Tween class that allows movements and transitions in the state of the widgets. 

How can eXULiS be extended? 



Survey of Adult Skills Technical Report  20  Chapter 9 
 

The integration of the SVG standard in eXULiS was first intended to allow authors to create their 
own custom themes and skins for the tests/items (e.g. a button with shape of a cloud for 6 years 
old children). The power of the SVG standard and the capacity of Flash to call some external 
JavaScript functions, unleashed the potentials of eXULiS. First, we created a module 
transforming some ChartML tags into SVG (see Figure 9.7) that eXULiS displays perfectly. Our 
latest projects target some needs in physics and genetics’ laboratory simulations. 

Figure 9.7: The eXULiS extension 

 

This example (on Figure 9.8) is a mix of physics rules (gravity, levers, axis) applied to a schema 
that is a composition of SVG drawings and XUL widgets (buttons, checkbox) interacting in a 
laboratory allowing to experience a problem of static physics science. 

An example of use of eXULiS 

Figure 9.8: A physics lab with eXULiS  

II.2.6Test & item execution engine 
The packages’ organization of the Test & Item Execution Engine (TIEE) is centered on two main 
packages, i.e. the Test and the Item (cf. Figure 9.9). The following description of the Item 
package is based on the architecture of the QCM (Multiple-Choice Question) item model. 
However, the Item package structure may vary with the design choices taken by the item models 
designers (e.g. if designers use XUL2SWF/eXULiS to create Problem Solving items). The only 
constraint for an item model is just to embark and connect its part of the communication interface 
in order to implement the communication protocol that must take place between the Test instance 
and any Item instances. This protocol is described in the figures hereafter. 



Survey of Adult Skills Technical Report  21  Chapter 9 
 

Figure 9.9: Test & Item Execution Engine (TIEE) packages organization 

 

The Communication Interface (based on Flash Local Connection mechanism) between a Test and 
any kind of Item (see Figure 9.10) is defined in an API (see Figure 9.11). 



Survey of Adult Skills Technical Report  22  Chapter 9 
 

Figure 9.10: Test & Item Execution Engine (TIEE) packages organization 

 
 

Figure 9.11: Communication API used in the Test & Item collaboration schema 

 

For the normal functioning of the TIEE, only the communication API (located in the 
item_interface, on the right part of Figure 9.12) shall be integrated in an item model. Thereby, 
some item models already available on the TAO platform, present slightly different architectures 
(e.g. the Text-with-gaps item model). However, a good practice is to separate the control process 



Survey of Adult Skills Technical Report  23  Chapter 9 
 

from the graphical rendering. It is also good to avoid to split the Item’s side of the 
communication API or to merge it here and there in the different parts of the Item architecture. 
For PIAAC, the developers have applied Object-Oriented (OO) encapsulation paradigm, keeping 
the communication API in one layer of their item model movie clip, the GUI in a second layer, 
the data manipulation in a third one, and finally the control and process actions in one or more 
other layers. 

In the case of PIAAC, although the Test is responsible for the activation of the scoring and items 
sequencing, the design of the TIEE is oriented to a delocalization of the scoring and sequencing 
algorithms in separated packages. This architectural choice is insuring a minimum maintenance 
cost while new scoring (largely dependent on cultural specificities; for example, the comma 
separator and the thousand separator vary from country to country; in Japan, even a ten-thousand 
grouping the numbers is usual) and sequencing methods are adapted or added to the TIEE. 

The Figure 9.12 shows the standard execution and data flows of the testing process activities as 
managed by the TIEE. In the schema, at the level of the step 4, the structure of the item XML 
definition file (here, 123DE.xml) will vary depending on the design choices made by the 
developer of the item model; the model used in the example is the QCM (or Multiple-Choice 
Question) that uses the tao_item.swf Flash execution file. 



Survey of Adult Skills Technical Report  24  Chapter 9 
 

Figure 9.12: Schematic illustration of the Test and Item execution 

 



Survey of Adult Skills Technical Report  25  Chapter 9 
 

 

References 
Arkin, A. (2002, 13 November). Business process modeling language. Retrieved from 

xml.coverpages.org/BPML-2002.pdf 
Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., & Widom, J. (1996). Change detection in 

hierarchically structured information. In J. Widom (Ed.), Proceedings of the 1996 ACM 
SIGMOD International Conference on Management of Data (Montreal, Quebec, 4-6 
June, 1996), 493-504. doi: http://doi.acm.org/10.1145/233269.233366 

Clarck, J. “XSL Transformations (XSLT),” Version 1.0. (16 November, 1999). Retrieved from 
http://www.w3.org/TR/1999/RECxslt-19991116 

Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows and e-science: An 
overview of workflow system features and capabilities. Future generation computer 
systems, Vol. 25, 528-540. 

GraphML Team, The. (2010). GraphML specification. Retrieved from 
http://graphml.graphdrawing.org/specification.html 

Jadoul, R., Plichart P., Swietlik J., & Latour T. (2006). eXULiS – A rich Internet application 
(RIA) framework used for eLearning and eTesting.” Paper presented at the IV 
International Conference on Multimedia and Information and Communication 
Technologies in Education, m-ICTE 2006. 22-25 November, 2006. Seville, Spain; 
published in: Méndez-Vilas, A., Solano Martin, A., Mesa González, J., & Mesa González, 
J. A. (Eds.): Current developments in technology-assisted education (2006), Vol. 2. 
FORMATEX (http://www.formatex.org/micte2006/book2.htm), Badajoz, Spain, pp. 851-
855. 

Latour, T., & Martin, R. (2007, October). TAO, an open and versatile computer-based 
assessment platform based on semantic web technology. ERCIM News, 71, 32-33. 

Levenshtein, V. (1965). Binary codes capable of correcting deletions, insertions, and reversals. 
Doklady Akademii Nauk SSSR (Russian), 163(4): 845-848. English translation in Soviet 
Physics Doklady, 10(8), 707-710. 

Miller, W., & Myers, E. W. (1985, November). A file comparison program. Software –Practice 
and Experience, 15(11), pp. 1025-1040. 

Pemberton, S., et al. (2000, 26 January). XHTML™ 1.0 The Extensible HyperText Markup 
Language, A Reformulation of HTML 4 in XML 1.0 (2nd ed.). Retrieved from 
http://www.w3.org/TR/2002/REC-xhtml1-20020801 

PHP Group, The. (2010a). Introduction to PHP. Retrieved from 
http://www.php.net/manual/en/introduction.php 

PHP Group, The. (2010b). PHP-GTK: PHP-GTK 2 Manual: Preface. Retrieved from 
http://gtk.php.net/manual/en/preface.php 

Plichart, P., Jadoul, R., Latour, T., & Vandenabeele, L. (2004). Communication at the advances 
in intelligent systems – theory and application. AISTA 2004. Luxembourg. 



Survey of Adult Skills Technical Report  26  Chapter 9 
 

Reenskaug, T. (1979, May). THING-MODEL-VIEW-EDITOR - An example from a planning 
system. Technical note. Xerox PARC.  Retrieved from 
http://heim.ifi.uio.no/~trygver/mvc/index.html 

Reenskaug, T. (1979, December). MODELS - VIEWS - CONTROLLERS. Technical note. Xerox 
PARC. Retrieved from http://heim.ifi.uio.no/~trygver/mvc/index.html 

Silver, B. (2005, 17 August). BPMS watch: Agility and BPMS architecture. Retrieved from 
http://www.bpminstitute.org/articles/article/article/bpms-watch-agilityand-bpms-
architecture.html 

van der Aalst, W. M. P. (2003). Patterns and XPDL: A critical evaluation of the XML process 
definition language. The Netherlands: Department of Technology Management 
Eindhoven University of Technology. 

Workflow Management Coalition, The. (2008). XML Process Definition Language, Version 
2.1a. Retrieved from http://www.wfmc.org/Download-document/WFMC-TC-1025-Oct-
10-08-A-Final-XPDL-2.1-Specification.html 

XML User Interface Language (XUL) (2010). Retrieved from 
https://developer.mozilla.org/en/XUL 


	Chapter 06 PIAAC Tech Report.pdf
	Chapter 6: Development of Technical Support Tools
	Britta Upsing, Frank Goldhammer, Maya Schnitzler, Robert Baumann, Roland Johannes, Ingo Barkow and Heiko Rölke, DIPF; Isabelle Jars, Thibaud Latour, Patrick Plichart, Raynald Jadoul and Christopher Henry, CRP; and Mike Wagner, ETS

	6.1 Development of the Item Management Portal
	6.2 Translation and adaptation tools
	6.3 Support tools

	Chapter 07 PIAAC Tech Report.pdf
	Chapter 7: Development of the CAPI Questionnaire System
	Thibaud Latour and Raynald Jadoul, CRP; and Mike Wagner, ETS

	7.1 Introduction
	7.2 CAPI system specifications and features
	7.2.1 Overall description of the system
	7.2.2 Running the questionnaire
	7.2.3 Running the interview
	7.2.4 Interview administration
	7.2.5 Support for PBA instruments

	7.3 CAPI runtime
	7.3.1 Components
	7.3.1.1 Ontology management and question definition: Generis4
	7.3.1.2 Workflow management and rule system: TAO WF engine

	7.3.2 Import, export and interface
	7.3.2.1. CAPI initialization
	7.3.2.2 Administration data exchange during and after the interview
	7.3.2.3 CAPI result export


	References

	Chapter 08 PIAAC Tech Report.pdf
	Chapter 8: Development of the Integrated Computer Platform
	Britta Upsing, Frank Goldhammer, Maya Schnitzler, Robert Baumann, Roland Johannes, Ingo Barkow and Heiko Rölke, DIPF; Isabelle Jars, Thibaud Latour, Patrick Plichart, Raynald Jadoul and Christopher Henry, CRP; and Mike Wagner, ETS

	8.1 Development of the virtual machines
	8.1.1 VM basics and hardware
	8.1.2 Content of the PIAAC VM
	8.1.3 Development process and automation
	8.1.4 VM patching process
	/
	8.1.5 Changes from Field Test to Main Study

	8.2 Development of the interfacing software for the integration in a national CMS (DIPF/ETS)
	8.2.1 Interface software requirements
	8.2.2 Implementation of the interfacing software
	8.2.3 Setup
	8.2.4 VM remote control
	8.2.5 Assessment control
	8.2.6 Data access
	8.2.7 Maintenance and administration
	8.2.8 Interface overview
	8.2.9 Changes and enhancements from Field Test to Main Study


	Chapter 09 PIAAC Tech Report.pdf
	Chapter 9: The TAO Platform
	Raynald Jadoul, Patrick Plichart, Jérôme Bogaerts, Christophe Henry and Thibaud Latour, CRP Henri Tudor

	9.1 TAO architecture overview
	9.1.1 Item (or question) management
	9.1.2 Test (or questionnaire) management
	9.1.3 Test taker (or interviewee, or respondent) management
	9.1.4 Group of test takers (or interviewees) management
	9.1.5 Delivery (test taking, examination, or interview) management
	9.1.6 Results management
	9.1.7 Process management

	9.2 TAO architecture for PIAAC
	9.2.1 Tackling CBA challenges with the semantic Web
	9.2.2 A workflow engine for cross-cultural large-scale assessment
	9.2.2.1 Introduction
	9.2.2.2 Describing the assessment process
	9.2.2.3 Authoring and cultural adaptation support
	9.2.2.4 Assessment process execution
	9.2.2.5 Conclusion

	9.2.3 Test and item delivery architecture

	9.2.4 Use of the TAO platform for PIAAC
	9.2.4.1 BLACK model to support rich CBA items (component Problem Solving)
	Motivations in using the BLACK format
	BLACK — a MVC architecture

	BLACK data structure
	9.2.4.2 eXULiS – a Rich Internet Application (RIA) framework used eTesting
	The overall architecture of the TAO platform
	Design of the eXULiS framework
	II.2.6Test & item execution engine

	References


